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Abstract 

The purpose of this study was to use meta-analysis to synthesize findings from 

randomized control trials and quasi-experimental research on instructional approaches 

that enhance the mathematics proficiency of students with learning disabilities. A search 

of the literature from January 1971 to August 2007 resulted in a total of 42 interventions 

(41 studies) that met the criteria for inclusion in the study. We examined the impact of 

four categories of instructional components: (a) approaches to instruction and/or 

curriculum design, (b) providing formative assessment data and feedback to teachers 

on students’ mathematics performance, (c) providing formative data and feedback to 

students with LD on their mathematics performance, and (d) peer-assisted mathematics 

instruction. We first examined the effectiveness of each instructional component in 

isolation by determining unconditional stratified mean effects and heterogeneity. All 

instructional components except for student feedback with goal-setting and peer-

assisted learning within a class resulted in significant mean effects ranging from 0.21 to 

1.56. We then examined the effectiveness of these same components conditionally, 

using hierarchical multiple regressions. We created a model to understand instructional 

variables that explain significant amounts of unique variance in outcomes. Two 

instructional components were associated with practically and statistically important 

increases in effect size – teaching students to use heuristics and explicit instruction. 

Limitations of the study, suggestions for future research, and applications for 

improvement of current practice are discussed.  
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Introduction 

 Current prevalence estimates for students with learning disabilities and deficits in 

mathematics competencies typically range from 5% to 7% of the school age population 

(Fuchs et al., 2005; Geary, 2003; Gross-Tsur, Manor, & Shalev, 1996; Ostad, 1998). 

When juxtaposed with the well-documented inadequate mathematics performance of 

students with learning disabilities (Bryant, Bryant, & Hammill, 2000; Cawley, Parmar, 

Yan, & Miller, 1998; Geary, 2003), these estimates highlight the need for effective 

mathematics instruction based on empirically validated strategies and techniques. 

Until recently, mathematics instruction was often treated as an afterthought in the 

field of instructional research on students with LD. A recent review of the ERIC literature 

base (Gersten, Clarke, & Mazzocco, 2007) found that the ratio of studies on reading 

disabilities to mathematics disabilities and difficulties was 5:1 for the decade 1996-2005. 

This was a dramatic improvement over the ratio of 16:1 in the prior decade.  

 During the past five years, two important bodies of research have emerged and 

helped crystallize mathematics instruction for students with learning disabilities. The 

first, which is descriptive, focuses on student characteristics that appear to underlie 

learning disabilities in mathematics. The second, which is experimental and the focus of 

this meta-analysis addresses instructional interventions for students with learning 

disabilities. 

We chose to conduct a meta-analysis on interventions with students with learning 

disabilities and to sort studies by major types of instructional variables rather than 

conduct a historical, narrative review of the various intervention studies. Although three 
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recent research syntheses (Kroesbergen & Van Luit, 2003; Swanson & Hoskyn, 1998; 

Xin & Jitendra, 1999) involving meta-analytic procedures target aspects of instruction for 

students experiencing mathematics difficulties, major questions remain unanswered.  

Swanson and Hoskyn (1998) investigated the effects of a vast array of 

interventions on the performance of adolescents with LD in areas related to academics, 

social skills, or cognitive functioning. They conducted a meta-analysis of experimental 

intervention research on students with LD. Their results highlight the beneficial impact of 

cognitive strategies and direct instruction models in many academic domains, including 

mathematics.  

Swanson and Hoskyn (1998) organized studies based on whether there was a 

measurable outcome in a target area and whether some type of treatment was used to 

influence performance. Swanson and Hoskyn were able to calculate the effectiveness of 

interventions on mathematics achievement for students with LD, but did not address 

whether the treatment was an explicit focus of the study. A study investigating a 

behavior modification intervention, for example, might examine impacts on both reading 

and mathematics performance. The link between the intervention and math 

achievement would be made even though the focus of the intervention was not to 

improve mathematics achievement per se. Thus, the Swanson and Hoskyn meta-

analysis only indirectly investigated the effectiveness of mathematics interventions for 

students with LD.  

The other two relevant syntheses conducted so far investigated math 

interventions directly (i.e., math intervention was the independent variable) but focused 
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on a broader sample of subjects experiencing difficulties in mathematics. Xin and 

Jitendra (1999) conducted a meta-analysis on word problem solving for students with 

high incidence disabilities (i.e., students with learning disabilities, mild mental 

retardation, and emotional disturbance), as well as students without disabilities who 

were at-risk for mathematics difficulties. Xin and Jitendra examined the impacts 

associated with four instructional techniques - representation techniques (diagramming), 

computer-assisted instruction, strategy training and “other” (i.e., no instruction like 

attention only, use of calculators, or instruction not included on other categories like key 

word or problem sequence). They included both group design and single subject studies 

in their meta-analysis; the former were analyzed using standard mean change, while the 

later were analyzed using percentage of nonoverlapping data (PDN). For group design 

studies, they found computer-assisted instruction to be most effective, and 

representation techniques and strategy training superior to “other”. 

Kroesbergen and Van Luit (2003) conducted a meta-analysis of mathematics 

interventions for elementary students with special needs (students at-risk, students with 

learning disabilities, and low-achieving students). They examined interventions in the 

areas of preparatory mathematics, basic skills, and problem solving strategies.  They 

found interventions in the area of basic skills to be most effective. In terms of method of 

instruction for each intervention, direct instruction and self-instruction were found to be 

more effective than mediated instruction. Like Xin and Jitendra (1999) Kroesbergen and 

Van Luit included both single subject and group design studies in their meta-analysis, 

however they did not analyze data from these studies separately. We have reservations 
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about the findings as the data analytic procedures used led to inflated effect sizes in 

single subject studies (Busse, Kratochwill, & Elliot, 1995). 

Neither of the two meta-analyses (i.e., Kroesbergen & Van Luit, 2003; Xin & 

Jitendra, 1999) focused specifically on students with learning disabilities. We believe 

there is relevant empirical support for a research synthesis that focuses on 

mathematical interventions conducted for students with learning disabilities. Our 

reasoning was most strongly supported by a study by Fuchs, Fuchs, Mathes, and 

Lipsey (2000), who conducted a meta-analysis in reading to explore whether students 

with LD could be reliably distinguished from students who were struggling in reading but 

were not identified as having a LD. Fuchs et al. found that low-achieving students with 

LD performed significantly lower than students without LD. The average effect size 

differentiating these groups was 0.61 standard deviation units (Cohen’s d), indicating 

that the achievement gap between the two groups was substantial. Given this evidence 

of differentiated performance between students with LD and low-achieving students 

without LD, we felt it was necessary to synthesize mathematical interventions conducted 

with students with LD specifically.  

Our intent was to analyze and synthesize research using parametric statistical 

procedures (i.e., calculating effect sizes using Hedges g). Calculating the effect sizes 

(Hedges g) for studies with single-subject designs would result in extremely inflated 

effect size scores (Busse, Kratochwill, & Elliot, 1995) and any mean effect size 

calculations would be impossible. Since there is no known statistical procedure for valid 

combination of single subject and group design studies, we limited our meta-analysis 



 

 

9 

(as do most researchers) to those utilizing randomized control trials (RCTs) or high 

quality quasi-experimental designs. 

Purpose of the Meta-Analysis 

The purpose of this study was to synthesize RCTs and quasi-experimental 

research on instructional approaches that enhance the mathematics performance of 

school-age students with learning disabilities. We only included RCTs and quasi-

experimental designs (QEDs) in which there was at least one treatment and one 

comparison group, evidence of pretest comparability for QEDs, and sufficient data with 

which to calculate effect sizes. 

Method 

Selection of Studies: Literature Review 

In this study, we defined mathematical interventions as instructional practices 

and activities designed to enhance the mathematics achievement of students with LD. 

We reviewed all studies published from January 1971 to August 2007 that focused on 

mathematics interventions to improve the mathematics proficiency of school-age 

students with LD. Two searches for relevant studies were undertaken. The first search 

was from 1971 to 1999. The second search extended the time period to August 2007.  

The 1971-1999 search began with a literature review using the ERIC and 

PSYCHINFO databases. The following combinations of descriptors were used in the 

search: mathematics achievement, mathematics education, mathematics research, 

elementary education, secondary education, learning disabilities, and learning 

problems. We also conducted a systematic search of Dissertation Abstracts 
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International and examined the bibliographies of research reviews on various aspects of 

instructional intervention research for students with learning disabilities (i.e., 

Kroesbergen & Van Luit, 2003; Maccini & Hughes, 1997; Mastropieri, Scruggs, & Shiah, 

1991; Miller, Butler, & Lee, 1998; Swanson & Hoskyn, 1998; Swanson, Hoskyn, & Lee, 

1999) for studies that may not have been retrieved from the computerized searches. 

Finally, we conducted a manual search of major journals in special, remedial, and 

elementary education  (Journal of Special Education, Exceptional Children, Journal of 

Educational Psychology, Journal of Learning Disabilities, Learning Disability Quarterly, 

Remedial & Special Education, Learning Disabilities Research & Practice) to locate 

relevant studies. 

These search procedures for the period between 1971 and 1999 resulted in the 

identification of 579 studies. Of this total, 194 studies were selected for further review 

based on analysis of the title, key words, and abstracts. Of these 194 studies located in 

the first search, 30 (15%) met our criteria for inclusion in the meta-analysis.  

We conducted the 1999 to August 2007 search using a similar, but streamlined 

procedure. For this literature search, we used the terms mathematics and LD or 

arithmetic and LD. We also excluded dissertations from the search. The second search 

resulted in a pool of an additional 494 potential studies. We narrowed this set of studies 

to 38 by reviewing the title, keyword, and abstracts. Finally, 14 of the 38 studies (37%) 

met the criteria for inclusion in the meta-analysis. Thus, the two searches resulted in a 

total of 44 research studies. 
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During the first search, two of the authors determined if a study met the pre-

established criteria for inclusion using a consensus model; any disagreements were 

reconciled. During the second round, this determination was made by the senior author. 

Another author independently examined 13 of the 38 studies (approximately one-third). 

Inter-rater reliability based on whether to include the study or not was 84.6%. The 

authors initially disagreed on the inclusion of two of the 13 studies; however, after 

discussion they reached a consensus. To ensure that studies from both searches were 

included using the same criteria, we randomly selected 20% of the studies (N=9) and 

conducted inter-rater reliability.  A research assistant who was not involved with this 

project examined each study and determined if the study could be included or not based 

on the inclusion criteria. All nine studies met the criteria for inclusion; inter-rater 

reliability was 100% (which was calculated using the formula: number of agreements 

divided by number of agreements plus disagreements multiplied by 100).  

Criteria for Inclusion  

Three criteria were used to determine whether to include a study in this meta-

analysis.  

Focus of the Study 

 To be included in this meta-analysis, the study had to focus on an evaluation of 

the effectiveness of a well-defined method (or methods) for improving mathematics 

proficiency. This could be done in the following ways: (a) Specific curricula or teaching 

approaches were used to improve mathematics instruction (e.g., teacher use of “think-

aloud” learning strategies; use of real world examples); (b) various classroom 
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organizational or activity structures were used (e.g., peer-assisted learning); or (c) 

formative student assessment data were used to enhance instruction (e.g., curriculum-

based measurement data; goal-setting with students using formative data). Studies that 

only examined the effect of test-taking strategies on math test scores, taught students 

computer-programming logic, or focused on computer-assisted instruction (i.e., 

technology) were not included. We felt that computer-assisted instruction would be more 

appropriate for a meta-analysis in the area of technology. Studies that assessed the 

achievement impact of changes in structural or organizational elements in schools, such 

as co-teaching or inclusion – but did not address a specific instructional approach – 

were excluded, even though they may have included a mathematics achievement 

measure (in this decision, we differed from Swanson & Hoskyn, 1998). 

Design of the Study 

 We included studies that could lead to strong claims of causal inference, i.e., 

randomized controlled trials (RCTs) or quasi-experimental designs (QEDs). We noted if 

the study was a RCT1 or a QED based on the presence of random assignment to the 

intervention conditions. Studies with single-case designs were not included, as they 

cannot be integrated into a meta-analysis. Quasi-experiments were included if students 

were pre-tested on a relevant mathematics measure and one of the following three 

conditions were met: (a) researchers in the original study adjusted post-test 

performance using appropriate analysis of covariance (ANCOVA) techniques; (b) 

authors provided pretest data so that effect sizes could be calculated using the 

Wortman and Bryant (1985) procedure or (c) if post-test scores could not be adjusted 
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statistically for pretest differences in performance, there was documentation showing 

that no significant differences (<.25 SD units) existed between groups at pretest on 

relevant measures of mathematics achievement.  

Participants in the Study 

The participants had to be students with an identified LD. A study that also 

included students without LD was included if it met one of the following criteria: (a) 

separate outcome data were presented for the different participant groups so that effect 

sizes could be computed separately for students with LD; or (b) if separate outcome 

data were not presented for students with LD, then over 50% of the study participants 

needed to be students with LD. All studies provided operational definitions of LD or 

mathematical disabilities (MD). Definitions of LD often pertained either to state 

regulations regarding LD (e.g., Fuchs, Fuchs, Hamlett, Phillips, & Bentz, 1994) or district 

regulations (e.g., Marzola, 1987). For studies conducted outside the United States (Bar-

Eli & Raviv, 1982; Manalo, Bunnell, & Stillman, 2000) we depended on authors’ 

descriptions that focused on the I.Q. – achievement discrepancy, and for a more recent 

study we used contemporary language that reflects IDEA 2004 (Fuchs, Fuchs, & 

Prentice, 2004).  

Coding of Studies 

Phase I Coding: Quality of Research Design 

We coded the studies that met the final eligibility criteria in three phases. In 

Phase I, two of the authors examined each study in terms of the strength and quality of 

the design. We examined the control groups to determine if the content covered in those 
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groups was consistently relevant or minimally relevant to the purpose of the study. We 

also determined if the unit of analysis was class or student, and whether the unit of 

analysis and unit of assignment were the same. This information is important for 

statistical analyses as a mismatch can lead to spurious inferences since it fails to 

account for clustering at the classroom level (Bryk & Raudenbush, 1992; Donner & Klar, 

2000; Gersten & Hitchcock, 2008). We also checked the studies to determine if only one 

teacher/school was assigned per condition, as this is a major confound (What Works 

Clearinghouse, 2006). This confound was not present in any of the studies.  

Phase II Coding: Describing the Studies 

In Phase II, all studies were coded on the following variables: (a) mathematical 

domain, (b) sample size, (c) grade level, (d) length of the intervention, and (e) 

dependent measures. We also determined who implemented the intervention (i.e., 

classroom teacher, other school personnel, or researchers), if fidelity of treatment was 

assessed, and whether scoring procedures for relevant mathematics performance 

scores included inter-rater agreement procedures.  

 Operational definition of mathematical domain. We used the work of the 

National Research Council (NRC) (2001), Fuchs and colleagues (e.g., Calhoon & 

Fuchs, 2003; Fuchs, Fuchs, Hamlett, & Appleton, 2002; Owen & Fuchs, 2002), and the 

National Mathematics Panel (2008) to identify and operationalize five mathematical 

domains of math achievement. These domains were (a) operations, (b) word problems, 

(c) fractions, (d) algebra, and (e) general math proficiency.  
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 The domain of operations includes basic operations (i.e., addition, subtraction, 

multiplication, and/or division) of whole numbers, fractions, or decimals. Word problems 

includes all types of word problems – those requiring only a single step, those requiring 

multiple steps, those with irrelevant information, and those considered by the authors to 

be “real world” problems. The domain of fractions includes items that assess 

understanding of key concepts involving fractions such as equivalence, converting 

visual representations into fractions (and vice versa) or magnitude comparisons. 

Algebra was defined as simple algebraic procedures. General math proficiency covers a 

range of mathematical domains. 

 Dependent measures. We determined if a measure was researcher-developed 

or a commercially available norm-referenced test. We also categorized the measures in 

terms of the skills and knowledge involved in solving the problems. For example, did a 

measure test a range of skills like the Wide Range Achievement Test-Revised (WRAT-

R) (Jastak & Wilkinson, 1984), focus on a narrow skill area such as the Math Operations 

Test-Revised (Fuchs, Fuchs, & Hamlett, 1989), or address general mathematics such 

as the Test of Mathematical Abilities (Brown, Cronin, & McEntire, 1994)? We examined 

the alignment between the focus of the intervention and the skills and knowledge being 

assessed by each measure. Finally, we gathered data on the technical adequacy of 

outcomes measures.  

We needed uniform operational definitions for post-tests, transfer tests, and 

maintenance tests so that we could synthesize findings across disparate studies. 

Authors varied in terms of how they defined immediate post-test versus maintenance 
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test, and what they considered a transfer test. Some considered a test given two days 

after a unit was completed a maintenance test. Some authors were extremely liberal in 

what they considered a transfer item (e.g., a word problem with a similar structure to 

what had been taught, but using slightly different words than those in the curriculum).  

Consequently, we defined post-tests, maintenance tests, and transfer tests in the 

following manner:  

A post-test had to measure skills covered by the instructional intervention. If the 

post-test measured new skills not covered during instruction, we made a note of it for 

subsequent use in interpreting the findings. In addition, most post-tests were given 

within three weeks of the end of the instructional intervention. If a post-test 

administration extended past the 3-week period we made a note of it.  

A maintenance test is a parallel form of the post-test given 3 or more weeks after 

the end of the instructional intervention to assess maintenance of effects (i.e., retention 

of learning). If a maintenance test was given earlier than 3 weeks, we designated it as a 

post-test, and used it in our outcome calculations.  

A transfer test measures the students’ ability to solve problems that they were not 

exposed to during instruction. We used the definition of far transfer used in the work of 

Fuchs et al. (2002), and Van Luit and Naglieri (1999). Transfer tests include tasks that 

are different (sometimes substantially) from the tasks students were exposed to during 

the instructional intervention. For example, if the instruction covered single-digit addition 

problems, the transfer test could include two-digit addition or three-digit addition 

problems. Likewise, if the instruction was on mathematical operations (addition, 



 

 

17 

subtraction, division, and multiplication), the transfer test could include problems 

requiring application of these skills (e.g., money, measurement, word problems, 

interpretation of charts or graphs etc). If the word problems included additional steps or 

asked the student to discern which information was irrelevant, these were considered 

transfer problems as well. Such far transfer measures were included in only nine studies 

and were used in calculating transfer effect sizes.  

 We included all near transfer tests in our outcome (post-test) calculations since 

near transfer measures require students to solve problems that closely resemble the 

ones used during instruction. Thus, the problems on the transfer measure differ from the 

post-test tasks in minor ways: for example, new numbers/quantities (change 23+45 to 

13+34; six candies to 4 candies), different cover stories (buy pencils instead of erasers), 

and different keyword (how many boxes versus how many sacks).  

Finally, measures that were parallel forms of post-tests (so clearly stated in the 

manuscripts) were not considered transfer tests, but were coded as either second post-

tests or maintenance tests (depending on when they were administered).  

Exclusion of studies during phase II coding. During Phase II coding, we 

excluded three studies from the meta-analysis. Friedman (1992) was excluded as the 

dependent measure Wide Range Achievement Test (WRAT) was poorly aligned with 

the intervention because the WRAT only assesses computation and the intervention 

focused on word problems. Greene (1999) was excluded from the meta-analysis 

because of a confounded design. Jenkins (1992) was excluded as the differential 
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attrition in this study exceeded 30% and there was no attempt to conduct an intent-to-

treat analysis. Shadish, Cook, and Campbell (2002) define an intent-to-treat analysis as: 

“In an intent-to-treat analysis, participants are analyzed as if they received the treatment 

to which they were assigned …This analysis preserves the benefits of random 

assignment for causal inference but yields an unbiased estimate only about the effects 

of being assigned to treatment, not of actually receiving treatment” (p. 320). 

See Appendix A for a list of the 41 studies included in the meta-analysis and their 

characteristics. (Note: total number of experiments/quasi-experiments was 42, as one of 

the articles included two different experiments).      

Phase III Coding: Determining the Nature of the Independent Variable(s) 

The primary purpose of Phase III coding was to determine a set of research 

issues that could be explored in this set of studies. Two of the authors developed a 

coding scheme for the selected set of studies through an iterative process that spanned 

several months. During the first reading of the article, we coded according to a broad 

category (e.g., curriculum design, providing feedback to teachers and students on an 

ongoing basis). We then reviewed these initial codes, reviewed our notes, and reread 

relevant sections of each article to pinpoint the precise research questions addressed. 

This involved rereading of all the studies by at least two of the authors. The authors 

completed all the coding at this level, although we often involved research assistants in 

discussions.  

In our final analysis, we settled on four major categories for the studies. These 

categories include (a) approaches to instruction and/or curriculum design, (b) providing 
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ongoing formative assessment data and feedback to teachers on students’ mathematics 

performance, (c) providing data and feedback to students with LD on their mathematics 

performance, and (d) peer-assisted mathematics instruction. These four broad 

categories were further dissected in terms of instructional components. The process of 

identifying these specifics was iterative and involved two authors and spanned several 

months. 

Note that several studies included three or more intervention conditions, and thus 

addressed several research questions. These studies were therefore coded into more 

than one category whenever applicable. We used orthogonal contrasts to capture the 

unique research questions posed. Some research studies had complex instructional 

interventions that were based on fusion of instructional variables (e.g., use of visuals 

and explicit instruction). These studies were also coded into more than one category 

whenever applicable. However, two categories with the same complex intervention were 

never compared with each other.  

We calculated inter-rater reliability on our coding of studies. We randomly picked 

20% of the studies (N=9) and had a research assistant (a doctoral student), who was 

not involved in the meta-analysis, code these nine studies according to the definitions 

we had established for the instructional components (described in the next section). 

Inter-rater agreement was calculated by using the formula agreements divided by the 

number of agreements plus disagreements, multiplied by 100. The inter-rater agreement 

for 20% of the total studies included in the meta-analysis was 88%. 
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In the next section, we describe and present the operational definitions of the four 

major categories. They are as follows: 

Approaches to instruction and/or curriculum design. Under this category we 

list six instructional components.  

1. Explicit instruction. A good deal of the special education literature in mathematics has 

called for instruction to be explicit and systematic (e.g., Fuchs & Fuchs, 2003; Gersten, 

Baker, Pugach, Scanlon, & Chard, 2001; Swanson & Hoskyn, 1998). However, the term 

is used to describe a wide array of instructional approaches. We found a reasonable 

amount of variance in the way explicit instruction was defined in the 42 interventions 

reviewed. In order to operationalize the construct, we only coded examples of 

systematic, explicit instruction if they possessed the following three specific 

components: (a) the teacher demonstrated a step-by-step plan (strategy) for solving the 

problem, (b) this step-by-step plan needed to be specific for a set of problems (as 

opposed to a general problem solving heuristic strategy) and (c) students were asked to 

use the same procedure/steps demonstrated by the teacher to solve the problem. Thus 

in the studies we coded as including explicit instruction, students were not only taught 

explicitly a strategy that provided a solution to a given problem type but were also 

required to solve the problem using the same strategy.    

2. Use of heuristics. To be included under this instructional component, the intervention 

had to address the use of one or more heuristics for solving a given problem. We have 

defined a heuristic as a method or strategy that exemplifies a generic approach for 

solving a problem. For example, a heuristic strategy can include steps such as “Read 
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the problem. Highlight the key words. Solve the problems. Check your work”. Thus 

instruction in heuristics, unlike explicit instruction (as defined in this manuscript), is not 

problem specific. Heuristics can be used in organizing information and solving a range 

of math problems. Instruction in multiple heuristics exposes students to multiple ways of 

solving a problem and usually includes student discourse and reflection on evaluating 

the alternate solutions and finally selecting a solution for solving the problem.  

3. Student verbalizations of their mathematical reasoning. To be coded here, the 

instructional intervention had to include some aspect of student verbalizations (e.g., 

verbalizing solution steps, self-instruction, etc). Student verbalization or encouragement 

of students’ thinking-aloud about their approach to solving a problem is often a critical 

component in scaffolded instruction (e.g., Palincsar, 1986). Approaches that encourage 

and prompt this type of verbalization have been found to be effective for students with 

LD in a wide array of curricula areas, including content area subjects such as history 

and science, as well as foundational areas in reading and math (Baker, Gersten, & 

Scanlon, 2002).  

  Most discussions of mathematics teaching note that a key component of 

effectiveness is “manag(ing) the discourse around the mathematical tasks in which 

teachers and students engage. … [Teachers] must make judgments about when to tell, 

when to question, and when to correct. They must decide when to guide with prompting 

and when to let students grapple with a mathematical issue” (NRC, 2001; p. 345). The 

process of verbalizing how to solve problems should encourage students to select an 

appropriate representation and, in discussion with peers and/or their teacher, evaluate 
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its relevance. It can also lead to discussions of which strategies apply to particular 

situations (Van Luit & Naglieri, 1999). 

4. Using visual representations while solving problems. Visual representations of 

mathematical relationships are consistently recommended in the literature on 

mathematics instruction (e.g., Griffin, Case, & Siegler, 1994; NRC, 2001; Witzel, Mercer, 

& Miller, 2003). The NRC Report notes that “mathematical ideas are essentially 

metaphorical (p. 95) ... Mathematics requires representations ... Representations serve 

as tools for mathematical communication, thought, and calculation, allowing personal 

mathematical ideas to be externalized, shared and preserved. They help clarify ideas in 

ways that support reasoning and building understanding” (p. 94). 

In order for a study to be coded as having a visual representation, either (a) the 

students had to use the visual representation while solving the problem, or (b) the 

teacher had to use the visual representation during the initial teaching and/or a 

demonstration of how to solve the target problem. If the study focused on student use of 

the visual, we required that student use be mandatory and not an optional step for 

students working to solve the problems.  

5. Sequence and/or range of examples. The literature on effective mathematics 

instruction stresses the importance of example selection in teaching concepts to 

students (e.g., Ma, 1999; Silbert, Carnine, & Stein, 1989; Witzel, Mercer, & Miller, 2003). 

To be coded as having this instructional component, studies needed to assess the 

effectiveness of either (a) a specified sequence/pattern of examples (concrete to 

abstract, easy to hard, etc), or (b) represent systematic variation in the range of 
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examples (e.g., teaching only proper fractions versus initially teaching proper and 

improper fractions). 

6. Other instructional and curricular variables. A study was coded as such, if it included 

instructional and curricular components other than the five previously listed.  

Providing ongoing formative assessment data and feedback to teachers on 

students’ mathematics performance. Ongoing assessment and evaluations of 

students’ progress in mathematics can help teachers measure the pulse and rhythm of 

their students’ growth in mathematics, and also help them in fine-tuning their instruction 

to meet the needs of their students. We were interested in determining the effects of 

teacher monitoring of student performance on students’ growth in mathematics, that is, 

an indirect impact of the use of assessments. To be included in this category, the 

teachers had to be provided with information on student progress. The information that 

was provided to the teachers could be (a) just feedback on student progress or (b) 

feedback plus options for addressing instructional needs (e.g., skill analysis, 

instructional recommendations, etc). 

Providing formative assessment data and feedback to students with LD on 

their mathematics performance. Providing students with information regarding their 

performance or effort is considered by many to be a key aspect of effective instruction. 

Information about performance or effort may serve to positively reinforce student effort, 

it may serve as a way to keep students accountable for staying engaged in working as 

expected on the business of learning mathematics, and it may provide useful 

information for students in understanding where they have been successful and 
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unsuccessful in their learning. To be included in this category, students had to receive 

some sort of feedback regarding their performance or effort. The students could have 

received (a) just feedback or (b) feedback that was tied to a specific performance goal. 

The feedback could also be from a variety of sources including teachers (e.g., Schunk & 

Cox, 1986), other peers (e.g., Slavin, Madden, & Leavey, 1984a), and computer 

software programs (e.g., Bahr & Reith, 1991).  

Peer-assisted math instruction. Students with LD are often provided with some 

type of assistance or one-on-one tutoring in areas for which they need help. Sometimes 

students’ peers provide this assistance or one-on-one tutoring. There are two types of 

peer tutoring. The more traditional is cross-age, wherein a student in a higher grade 

functions primarily as the tutor for a student in a lower grade (Robinson, Schofield, & 

Steers-Wentzell, 2005). In the newer within-classroom approach, two students in the 

same grade essentially tutor or assist each other. In many cases, a higher performing 

student is strategically placed with a lower performing student but typically both students 

work in the role of the tutor (who provides the tutoring) and the tutee (who receives the 

tutoring) (Fuchs, Fuchs, Yazdian, & Powell, 2002). For example, in working on a set of 

problems, the higher performing child will work on the problems first and the lower 

performing child will provide feedback. Then roles will be reversed and the lower 

performing child will work on problems for which he/she just had a model for how to 

solve them. Or in providing explanations for math solution, the higher performing child 

will provide the explanation first and the lower performing child will have had a model for 

a strong explanation (Fuchs, Fuchs, Phillips, Hamlett, & Karns, 1995). 
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 Generally, students use their time in peer-assisted instruction practicing math 

problems for which they have received previous instruction from their teacher. To be 

included in this category, the studies had to include a peer-assistance instructional 

component as their independent variable.  

Data Analysis 

Effect Size Computation 

Effect sizes for each contrast were calculated as Hedges g in the following 

manner: first, the difference between the experimental and comparison condition means 

was divided by the pooled standard deviation (Cooper & Hedges, 1994).  

Then, for studies that reported both pretest and post-test scores, we calculated post-test 

effect sizes adjusting for pretest performance (i.e., dadjusted  = dpost-test – dpretest) (Wortman & 

Bryant, 1985). This technique is especially useful for quasi-experimental studies or any 

study reporting initial non-equivalence of groups on a pretest measure. Our prior work 

has indicated that this adjustment provides more accurate gauges of effect size than 

simple unadjusted post-test effects (Baker, Gersten, & Lee, 2002; Gersten & Baker, 

2001). Finally, the estimate was corrected for small sample bias using the Hedges 

correction (Hedges, 1981; What Works Clearinghouse, 2007). The effect sizes for each 

study are presented in Appendix B. 

 In this meta-analysis we encountered several unusual issues while computing 

effect sizes. They are as follows: 

 Effect size computation for studies with three or four experimental 

conditions. Many of the studies in our sample reported outcomes from two or three 
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experimental conditions, each involving different combinations of instructional 

components. We could not compare each condition to the control group because the set 

of contrasts would not be orthogonal. We therefore developed either two or three 

orthogonal contrasts based on the research questions posed by the study’s authors. We 

thus were able to compute two or three gs that were orthogonal and also addressed a 

specific research question (Hedges, personal communication, 2003). 

 Effect size computation for studies with classroom as the unit of analysis. 

Four research studies assigned classes to treatment conditions and assessed all of the 

students with LD in the class on pretest and outcome measures, but then entered the 

mean score of 1 to 4 selected LD students into the analysis of variance. While 

appropriately analyzing treatment effects at the level of assignment for the F-ratios and 

p values present in the study, the variance reported in the studies is problematic for 

meta-analysis. That is because effect sizes at the classroom level will tend to be 

somewhat inflated. Had the authors reported the ratio of between-class to within-class 

variance (ICC) we could have adjusted the Level-2 variance reported to the total 

variance (Level-2  + Level-1) required. Without the ICC report, an alternative for 

estimation was found in unmoderated ICC values reported by Hedges and Hedberg 

(2007, p. 72). These ICCs were further adjusted based on the differential ratios of Level-

2 to Level-1 units in data sets from which they were drawn to sample sizes in studies 

analyzed here. Adjustment of g from these studies was then calculated: 

adjICC ICCgg =      Where:    ( )datasetlevellevelstudylevelleveladj nnnnICCICC )/()/ 1212=  
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 Aggregation and comparison across factors. Typical studies reported effects 

for multiple factors other than treatment group (e.g., gender, grade-level, measurement-

type, or measurement-time-point). In addition, treatments themselves range in 

complexity from single component (e.g., same-grade peer tutoring) to multiple 

component interventions (e.g., peer tutoring + student feedback + goal setting). 

Considered separately these factors divide into instructional components (e.g., use of 

peer-assisted learning, example sequencing, use of think aloud procedures) participant 

factors (e.g., gender or grade-level), and end-point factors (e.g., measures or time-

points), each of which was aggregated differently depending on their importance to the 

study and their estimability (Seely & Birkes, 1980).  

For the present analysis, stratified analyses of treatment components allowed 

consideration of complex intervention effects in multiple treatment categories. 

Participant and endpoint factors, however, were aggregated to one effect size estimate 

per study. For participant factors (e.g., gender, grade-level) where each participant may 

be considered an independent unit for analysis, summary statistics (i.e., mean, sd, and 

N) were aggregated to single values using a procedure attributed to Nouri and 

Greenberg (Cortina & Nouri, 2000). For studies that reported multiple endpoints (i.e., 

multiple post-test measures or parallel versions of a test administered within 3-weeks 

after intervention concluded) different procedures were employed. Both of these 

endpoint off-factors may be expected to have correlated error that required different 

approaches.  



 

 

28 

In cases of parallel forms of a post-test being administered at multiple time points 

within 3-weeks of the end of the intervention, we treated these as a larger measure at a 

single time-point (i.e., Total score = N items x k time-points). To aggregate multiple time-points 

a modification of the Nouri and Greenberg formula was used (Cortina & Nouri, 2000). 

For studies reporting outcomes with multiple measures a different approach was used: 

An effect size for each measure was first computed and effects so-computed were then 

combined into a simple average effect (i.e., gaverage = g1 + g2 …+gk / k).  

Although simple averaging implies the risk of overestimating the aggregated 

effect by underestimating the variance among measures, and remedies for this problem 

do exist (e.g., Gleser & Olkin, 1994; Rosenthal & Rubin, 1986), these remedies require 

correlational information which may neither be reported nor be directly estimable for 

meta-analysis (excepting cases where raw data are available). Also, while statistically 

meaningful, the difference of averaging effects and computing a latent effect from 

multiple measures may be small. For this study we judged such averaging to permit a 

reasonable approximation of the true score effect, capitalizing on the unit-free nature of 

the standardized mean difference statistic (i.e., g).   

In some studies a combination of factors were presented for aggregation (e.g., 

multiple, groups, time-points, and measures), which required systematic application of 

the aggregation strategies described. Once computed, a sensitivity analysis of 

aggregated effects was conducted by regressing effect size onto the number of groups, 

time-points, and measures aggregated in a fixed-weighted analysis. This analysis 

revealed no systematic biasing (rmax = .10). Thus, having applied these selection and 
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estimation procedures systematically, we calculated a pool of independent effect sizes 

(N = 51) for meta-analysis. 

Q Statistic. For each instructional component (e.g., explicit instruction, feedback 

to students) we determined if the gs were consistent across the studies (i.e., shared a 

common effect size) by calculating a homogeneity statistic Q (Hedges & Olkin, 1985). 

The Q-statistic is distributed as chi-square with k –1 degrees of freedom, where k is the 

number of effect sizes (Lipsey & Wilson, 2001) and is: 

! 

Q = w
i" # ES

i
$µ..

ES( )
2. A 

significant chi-square indicates excessive variation in g, suggesting a set of effects to 

come from more than one population, and justifies further analysis in order to identify 

the study, population, and treatment characteristics which moderate this variation. As 

the Q in the current study was significant (i.e., Q > df; p < .05), a mixed-weight 

regression analyses was conducted to estimate the moderating influence of participant, 

intervention, and method characteristics on mathematics outcomes. (Raudenbush & 

Bryk, 2002). 

Regression Analysis. While 51 effects were available for stratified analysis, we 

rarely saw a treatment in a pure form, i.e. a treatment with only one instructional 

component. More commonly each treatment differed from other treatment conditions by 

either one or two instructional components. Similarly, treatments varied in other ways 

arguably influential on outcomes (e.g., amount of instruction in mathematics content 

relevant to the outcome measure in control condition, use of commercially available 

norm-referenced or researcher-developed measures, and grade level of students). To 
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evaluate mathematics intervention effects with consideration of these complexities 

required a hierarchical regression analysis of effects. 

Since the goal of regression analysis is to consider both the correlations of 

treatments with effect size while controlling for the intercorrelations of these components 

with each other and with systematic differences among studies, stratified analyses were 

discarded in favor of simultaneous analysis of independent effects from each study. To 

achieve independence 41 effects were selected from the larger pool of 51 effects in the 

stratified analysis.  

 Since the effect size is by definition an index of treatment effect, post-hoc 

correlational investigations are limited to considering potential moderators of treatments. 

The development of a moderator model was undertaken to incrementally identify 

method differences (e.g., use of a meaningful control, inclusion of norm-referenced 

tests), participant characteristics (e.g., grade-level) and finally specific instructional 

component differences in explaining the variance among studies within mixed-weight 

simultaneous analyses using hierarchical linear models (HLM) (e.g., Raudenbush & 

Bryk, 2002). 

Results  

A total of 42 intervention studies were examined in this meta-analysis. Of these 

42 studies, not all reported participant information such as SES, race/ethnicity, and 

gender. The SES of the participants was reported in 12 studies. On average 59.3% of 

the participants were low SES/free or reduced lunch (range 7% to 100%). Ethnic 

background was provided in 20 studies with non-minority (Caucasian) participants 
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averaging 50.4% and ranging from less than 10% to 87.5%. Thirty-two studies report 

the ratio of male to female participants, with male participants averaging 59.8% (range 

of 5% to 100%).  

Many of the studies in our meta-analysis received multiple codes because they 

contain two or more instructional components. For this reason, we first present data on 

the effectiveness of each instructional component when examined in isolation and then 

on the relative strengths and weaknesses of each instructional component when 

compared with each other (i.e., findings from the hierarchical multiple regressions).  

Effectiveness of Instructional Components in Isolation 

In Table 1 we present the mean effect sizes (Hedges g) using a random effects 

model and a measure of heterogeneity of outcomes (Q) for each of the instructional 

components. Statistical significance levels are also presented. All instructional 

components save Student Feedback with Goal Setting and Peer-Assisted learning 

within a class resulted in significant mean effects. One-third of the instructional 

components produced Q ratios that were statistically significant, indicating that the 

impact of that component did not lead to a coherent pattern of findings. We attempt to 

explain to the reader likely sources for some of this heterogeneity. In some cases, 

extremely large effects seemed to be caused, in part, by a control condition with a 

minimal amount of relevant instruction. We took this issue into account in the multiple 

regression analysis.  In other cases, we simply speculate as to sources of variance. We 

also try to provide the reader with a sense of some of the interventions that are included 

in this meta-analysis. 
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Approaches to Instruction and/or Curriculum Design 

Explicit instruction. In 11 studies, explicit instruction was used to teach a 

variety of strategies and a vast array of topics. For example, in Jitendra, Griffin, 

McGoey, and Gardill (1998) and Xin, Jitendra, and Deatline-Buchman (2005), students 

were taught explicitly how to use specific visual representations, and in Marzola (1987), 

Ross and Braden (1991), and Tournaki (1993, 2003) students were taught a 

verbalization strategy. The studies also varied in their instructional focus. In half the 

studies, the focus was quite narrow—for example, teaching students to find half of a 

given quantity (Owen & Fuchs, 2002) or solving one-step addition and subtraction word 

problems (Lee, 1992).  In the remaining half, the focus was much broader.  

Nonetheless, the common thread among the studies was the use of systematic, explicit 

strategy instruction. 

The mean effect size for the explicit instruction category was 1.22 (p < .001; range 

= 0.08 to 2.15) and significant. Substantial variation in the scope and the mathematical 

sophistication of the strategies taught explicitly might have accounted for the variation in 

effect sizes. As the effect size range suggests, the Q statistic (41.68) for this category 

was significant (p < .001), indicating that the outcomes were heterogeneous. Fuchs, 

Fuchs, Hamlett, and Appleton (2002) taught students to solve different types of word 

problems (e.g., determining half of a given quantity; determining money needed to buy a 

list of items). Steps of the problem specific solution were prominently displayed. 

Students were shown the application of the solution steps using fully and partially 

worked examples. Students were required to apply the steps of the solution as they 
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worked through the problems. The effect size for this study was 1.78. In the Ross and 

Braden (1991) intervention (g = 0.08), students work through reasonable steps to solve 

the problem, but are not explicitly shown how to do the calculations.  

Xin et al. (2005)  (g = 2.15) incorporated explicit instruction in their instructional 

intervention, but in this case the strategy is derived from research on how experts solve 

mathematical problems (e.g., Fuson & Willis, 1989). In Xin et al. students were taught 

that there are several distinct problems involving multiplication and division. When given 

a problem, students first identify what type of problem it is (i.e., “proportion” or 

“multiplicative compare”) and then use a diagram linked to that specific problem type in 

order to create a visual representation of the critical information in that problem and the 

mathematical procedure(s) necessary to find the unknown. Students next translate the 

diagram into a math sentence and solve it. Unlike the Ross and Braden study, the Xin et 

al. intervention incorporates other instructional components such as sequencing 

instructional examples to obtain proficiency in each type of problem before 

systematically introducing contrasting examples. Although the control condition in this 

study did include use of visual representations, Xin et al. provide a much higher degree 

of structure and specificity associated with the visual representations in the 

experimental condition. It may be that a combination of these factors associated with 

effective instruction resulted in the observed impact of 2.15.  

Use of heuristics. The mean effect size for this category  (4 studies) was 1.56 (p 

< .001; range = 0.54 to 2.45) and significant. The Q for this category (9.10) was 

significant (p = .03), indicating that the outcomes were heterogeneous. Woodward, 



 

 

34 

Monroe, and Baxter (2001) exposed students in their study to multiple ways of solving a 

problem. In the Woodward et al. intervention, “as different students suggested a 

strategy for solving the problem, the tutor probed the other students to see if they 

agreed and encouraged different individuals to work the next step in the problem… 

Explicit suggestions were made only after a substantial period of inactivity and after the 

tutor had determined that the students could not make any further progress without 

assistance” (p. 37). This intervention resulted in an effect size of 2.00. 

Similarly, Van Luit and Naglieri (1991) also emphasized multiple heuristics (g = 

2.45). They trained teachers to first model several different approaches for solving a 

computational problem. For most of the lesson, however, the teacher’s task was to lead 

the discussion in the direction of using strategies and to facilitate the discussion of the 

solutions provided by the students. Each student was free to select a strategy for use, 

but the teacher assisted the children in discussion and reflection about the choices 

made.   

Student verbalizations of their mathematical reasoning. Eight studies 

examined the impact of student verbalizations to improve mathematics performance. 

The mean effect size for this category was 1.04 (p < .001). The Q for this category 

(53.39) was significant (p < .001), indicating heterogeneity of outcomes across the 

studies. The studies reveal differences in the amount of student verbalization 

encouraged, the specificity of the verbalizations, and the type of verbalizations. Some 

studies gave students very specific questions to ask themselves. Others were based on 

cognitive behavior modification and provided students with very general guidance. For 
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example, Hutchinson (1993) taught students to ask themselves: “Have I written an 

equation?” “Have I expanded the terms?” (p.39). Schunk and Cox (1986) provided even 

broader guidance to students - instructing them to verbalize what they were thinking as 

they solved the problems. The Schunk and Cox study resulted in an effect size of 0.07. 

The Marzola (1987) intervention had an effect size of 2.01, which is likely to be due to 

an artifact of the study; the control group received no instruction at all, just feedback on 

the accuracy of their independent work. 

Using visual representations while solving problems. Twelve studies were 

included in this set. In seven of the studies, teacher use of the visual representation was 

followed by mandatory student use of the same visual while solving problems. These 

were sub-classified as Visuals for Teacher and Student. In the remaining five studies, 

only the teacher used the visual representations. We hypothesized that the first sub-

category would produce different effects than the second. However, the mean effect 

sizes of 0.46 (p < .001) and 0.41 (p = .02) were similar, and consequently we discuss 

them as one set. The Q (14.13) for the 12 studies in this category was not statistically 

significant (p = .23), indicating relatively homogeneous outcomes.  

The studies in the visual category used diverse, complex intervention 

approaches. In Owen and Fuchs (2002), students solved the problems in a graphic 

manner  (e.g., draw a rectangle and divide it into half to make two boxes; distribute 

circles evenly into the two boxes; determine the number of circles in one box to 

determine the answer) without having to translate their problem into mathematical 

notation. This intervention resulted in as effect size of 1.39. The impact may be due to 
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several factors. One may have been the specificity of the visual. The second may have 

been that the mathematical problems addressed in the study had a narrow focus: 

calculating half for a given numerical quantity. Task demands were also the lowest 

among the set of 12 studies. In contrast, in D. Baker (1992) (g = 0.31), students were 

exposed to the concept of visually representing the information presented in the 

problem using a variety of examples, but were not told to use a specific visual. In Kelly, 

Gersten, and Carnine (1990) visual representations were used only by the teachers as 

they initially explained the mathematical concepts and problems. The intervention 

resulted in an effect size of 0.88, which we think is attributable not just to the use of 

visuals, but also to the overall instructional package that was designed and controlled 

for using effective instruction principles.  

Sequence and/or range of examples. Nine studies were included in this 

category. The mean effect size was 0.82 (p < .001; range = 0.12 to 2.15). The Q statistic 

(19.78) was also significant (p = .01) indicating heterogeneity of outcomes for this set of 

studies. The researchers utilized different frameworks for sequencing and selecting 

examples, thus heterogeneity in impacts is not surprising.  

One approach was to build sequences to highlight distinctive features of a given 

problem type. This approach appears to be effective (g = 2.15) as illustrated by the 

research of Xin and colleagues (Xin et al., 2005). Another effective principle for 

sequencing exemplars was utilized by Wilson and Sindelar (1991) (g = 1.55) and 

Woodward (2006) (g = 0.54). Here, instructional examples progressed from easy to 

more complex and difficult examples in a systematic fashion. Butler, Miller, Crehan, 
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Babbitt, and Pierce (2003) (g = 0.29) and Witzel et al. (2003) (g = 0.50) used a CRA 

(concrete-representational-abstract) instructional sequence to ensure that students 

actually understood the visual representations before using them as a means to 

illustrate mathematical concepts. The authors hypothesized that students with LD, even 

in the secondary grades, still need brief periods of time devoted to using concrete 

objects to help them understand the meaning of visual representations of fractions, 

proportions, and similar abstract concepts. Concepts and procedures involving fractions 

and algebraic equations were taught first with concrete examples, then with pictorial 

representations, and finally with abstract mathematical notation. 

Furthermore, three studies (Fuchs et al., 2004; Kelly et al., 1990; Owen & Fuchs, 

2002) addressed the issue of range of examples in their instructional sequencing. Fuchs 

et al. (g = 1.14) exposed students to a range of problems that encompassed four 

superficial problem features (i.e., novel context, unfamiliar keyword, different question, 

larger problem solving context) but used the same mathematical structure. As 

highlighted by the various studies in this category, the potential role of careful selection 

and sequencing of instructional examples to illustrate contrasts, build in-depth 

knowledge of mathematical processes, and highlight common features to seemingly 

disparate word problems seems to be quite important in helping students with LD learn 

mathematics. 

Other curriculum and instruction variables. One study, by Bottge, Heinrichs, 

Mehta, and Hung (2002), did not fit into any of our coding categories.  This study 

explored the impact of enhanced anchored instruction (EAI).  The intent of EAI is to 
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provide students with opportunities (for applications of mathematical principles and 

processes) that would focus on engaging real world problems in a systematic, abstract 

fashion. The underlying concept was that if students were asked to solve engaging real 

world problems (e.g., build a skateboard ramp) involving use of previously taught 

concepts like fractions and other computation skills, then the resulting enhanced 

motivation would dramatically increase their engagement in the learning task. Another 

unique feature of this intervention was that students were taught foundational 

knowledge using paper and pencil tasks and traditional texts, but application problems 

were typically presented via video or CD, rather than by traditional print. The effect size 

was 0.80, indicating some promise for this technique.  

Providing Ongoing Data and Feedback to Teachers on Students’ Mathematics 

Performance: The Role of Formative Assessment 

Seven studies met the criteria for inclusion in this category. All but two studies 

included three experimental conditions and a control condition, enabling us to identify 3 

orthogonal contrasts per study. By using orthogonal contrasts, the assumption of 

statistical independence was maintained, which is critical for meta-analysis (Hedges, 

2003, personal communication). Overall, the seven studies resulted in a total of 10 

contrasts. Consequently, the orthogonal contrasts were classified into two sub-

categories: a) teachers were provided with feedback on student progress (formative 

assessment data), and b) teachers were provided with feedback plus options for 

addressing instructional needs (e.g., skills analysis, instructional recommendations, 

etc). 
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Providing teachers with feedback on student progress. For seven contrasts, 

teachers were provided with ongoing student performance data. Five of these studies 

involved special educators and two involved general education teachers, but only data 

from the special education students in the classroom were included in the statistical 

analysis. The mean effect size for this set of studies was 0.21 (p = .04; range = 0.14 to 

0.40). The Q statistic was not significant (0.32, p = 1.0), indicating effects were relatively 

consistent. Feedback was provided to the teachers periodically (in most cases 

bimonthly) over periods of time ranging from 15 weeks to 2 school years.  

Providing teachers with feedback plus options for addressing instructional 

needs (e.g., skill analysis, instructional recommendations). Three studies included 

an orthogonal contrast that allowed us to test the “value added” by an option for 

addressing instructional needs. The mean effect size for this set of studies was 0.34 (p 

= .10; range = -0.06 to 0.48) and approached significance. In other words, the guidance 

options made the formative assessments significantly more effective.  

The options for addressing instructional needs provided in these three studies 

helped teachers in planning and fine tuning their instruction. For e.g., Allinder, Bolling, 

Oats, and Gagnon (2000) provided teachers with a set of prompts (written questions) to 

help them use the formative assessment data for adaptation of instruction. These 

prompts included the following: “On what skill(s) has the student improved compared to 

the previous 2-week period?” “How will I attempt to improve student performance on the 

targeted skill(s)?” Teachers detailed their responses on a one-page form. Then they 

repeated the process two weeks later using both the new assessment data and the 
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previous form to assist in decisions. In another study, Fuchs et al. (1994) provided 

teachers with a set of specific recommendations to accompany the student performance 

data. Recommendations included: a) topics requiring additional instructional time for the 

entire class, b) students requiring additional help via some sort of small group 

instruction or tutoring, and c) topics to include in small group instruction, peer tutoring, 

and computer assisted practice for each student experiencing difficulty. 

In summary, when we analyze all the 10 contrasts in the teacher feedback 

category, we note that the set of studies is coherent and has a mean effect size of 0.23 

(p = .01). Thus, providing feedback to teachers with or without additional guidance 

appears to be beneficial to students with LD.  

Providing Formative Assessment Data and Feedback to Students with LD on 

their Mathematics Performance 

Studies were categorized into two subcategories: (a) studies that provided data 

and feedback to students on their performance or effort (seven studies); and (b) studies 

that provided feedback that was also linked to some type of goal (five studies). 

Providing students with information on their progress in graphic form was statistically 

significant (0.23, p = .01). However, the mean effect size for involving students in the 

goal-setting process  (wherein they take part in setting goals or are made aware of pre-

set goals) and using formative assessment data to assess progress towards that goal 

was not statistically significant, 0.17 (p = .29). Thus, the key finding from this set of 

studies is that providing feedback to students enhances achievement. However, the 
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evidence does not suggest that involving students in setting instructional goals is 

beneficial.  

Providing feedback only to students. In all studies except Schunk and Cox 

(1986), students were given feedback on their mathematical performance. This 

performance feedback ranged from a simple communication of the number of problems 

answered correctly to more extensive and in-depth communication systems that 

presented graphs of scores, skill profiles, and mastery status information (skills learned 

and not learned). In Schunk and Cox, feedback was given on effort expended (e.g., 

“You’ve been working hard.”). Interestingly, this study had an effect size of 0.60. Effect 

sizes for other studies in this category ranged from -0.17 to 0.24. We also noted there 

were variations in the sources of feedback — adults, peers, and software programs.  

Providing feedback to students with goals. In three studies (Bahr & Reith, 

1991; Fuchs et al., 1997; Fuchs, Fuchs, Hamlett, & Whinnery, 1991), goal setting was 

examined in terms of its value-added function (i.e., feedback with goal setting versus 

feedback only). Effect sizes in the range of -0.34 to 0.07 were associated with these 

three studies, which make sense given that the control condition was also involved in 

providing feedback to students.  However, when the research question did not examine 

the value-added aspect of goal setting, as in Fuchs et al. (2004) and Reisz (1984), 

impacts appeared stronger. In Fuchs et al. (g = 1.14), a combination of instructional 

variables including feedback with goal setting were contrasted with regular classroom 

instruction.   
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It appears that goal setting does not add additional value over providing feedback 

to students with LD. Given the problems many of these students have with self-

regulation (Graham & Harris, 2003; Wong, Harris, Graham, & Butler, 2003; Zimmerman, 

2001), providing feedback on progress by a teacher or peer may be more effective than 

actually asking students to take part in the goal setting process and then adjust their 

learning based on the performance data. 

Peer-Assisted Mathematics Instruction  

Eight studies met the criteria for inclusion in this category. Two studies used 

cross-age tutoring, and six studies focused on peer-assisted learning within a class.   

Cross-age tutoring. The two studies that investigated cross-age tutoring yielded 

impressive effect sizes (1.15 & 0.75). The tutees in both studies were elementary 

students, and the tutors were well-trained upper elementary students. The main 

difference between the two interventions is that Bar-Eli and Raviv (1982) trained the 

tutors to actually teach lessons to the student with LD, whereas Beirne-Smith (1991) 

provided tutors with a detailed protocol which specified the types of feedback to provide 

students when they experienced difficulty or made mistakes. Beirne-Smith also provided 

tutors with ideas on how to explain problem solving strategies. In both studies a good 

deal of training was provided to the tutors.  

Peer-assisted learning within a class. In sharp contrast to cross-age tutoring, 

the mean effect size for this category was 0.14, which was not statistically significant (p 

= .27). The Q statistic (2.66) also was not significant (p = .75), indicating that the 

outcomes were relatively homogeneous. Based on the evidence to date, peer-assisted 
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learning within a class does not appear to result in beneficial impacts for students with 

LD.    

A critical feature in most of the studies we reviewed was the amount and 

extensiveness of the training provided to students who assumed the role of tutor. There 

was also extensive variation in the roles and responsibilities of the members of the team 

or group. In earlier studies highly constricted roles were given to the peer tutor. For 

example, Slavin et al. (1984a, 1984b) limited the role of the partner or tutor to providing 

feedback on accuracy of a student’s responses. More recent studies involved more 

complex roles for the tutor. One other interesting factor to consider in the evolution of 

this research is that the early research of Fuchs, Fuchs, Phillips, Hamlett, and Karns 

(1995) used the conventional tutor-tutee model where the tutor was the relative “expert” 

and the tutee the relative novice. In the latter studies by Fuchs and colleagues, tutoring 

is reciprocal in nature. In other words, students alternate between assuming the role of 

tutor and tutee.  

This is one of the few areas where the mean effect size is not significantly 

different from zero, and effect sizes are consistently more modest than they are in other 

categories. It seems reasonable to conclude that more research needs to be done to 

examine whether peer-assisted learning within a class is an effective practice for 

students with LD. 

Findings from Regression Analysis2 

As noted earlier, many of the instructional variables (e.g., explicit instruction, 

verbalization) were often a part or component of a complex instructional intervention. In 
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the previous section we presented data on the effectiveness of each instructional 

component in isolation. We now present the data from multiple regressions that 

essentially answer questions regarding the relative contribution of each instructional 

component in the overall effectiveness of the complex multi-component instructional 

interventions. 

Mean Effects of Mathematics Instruction Programs 

Regression analysis was conducted on 41 independent effects. The overall or 

unmoderated random effects mean for this subset was 0.63 (p < .001), indicating that 

mathematics interventions were generally effective across students, settings, and 

measures. The effect sizes ranged widely from - 0.29 to 2.45.  

As expected there was considerable variation in treatment effects. A test of the 

heterogeneity of these effects across all instructional components was significant (Q(40) 

= 149.70). This variation may be attributed to method differences and/or general and 

specific treatment characteristics. To better estimate categorical treatment effects, we 

developed an incremental regression model to assess the net outcomes of method and 

general characteristics assumed to be influential. These variables were assessed for 

their correlation with effect size (r or β > .10) and negligible correlations with each other. 

Size of correlation rather than statistical significance was used as the criterion for 

continued inclusion in the model since the latter criterion posed an undue initial burden 

on the single moderator in the initial stages of model development. Statistical inference 

testing was reserved for the later fuller model.   
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The Relation of Methodological Factors to Effect Size  

We began by examining the correlations of effects with two research design 

characteristics: (a) quasi-experimental versus experimental design and (b) whether or 

not the control group received any mathematics instruction relevant to the outcome 

measures. We tested moderators using random weighting (i.e., assuming that effect 

size variance unexplained by moderators is randomly distributed). While studies using 

an experimental design had generally smaller effect sizes than quasi experiments (g 

= -0.40), this difference was not statistically different from zero (p = .33). However, 

studies that provided a meaningful treatment in the control condition tended to have 

significantly smaller effect sizes when compared to studies that did not (g = -0.99; p = 

.01).  

The Relation of Study Characteristics to Effect Size 

Substantive study characteristics were analyzed while adjusting for the presence 

of a meaningful control. Characteristics considered included publication characteristics 

(i.e., year and type), measurement characteristics (i.e., researcher developed 

measures, computation measures, word problems), student grade level, and treatment 

characteristics (i.e., number of sessions, treatment components, and interventionist 

characteristics). Each of these was tested individually to avoid the confounding 

influence of other study characteristics using a mixed-weight regression analysis. 

  Year of publication was positively associated with effect size (β = .21) indicating 

recent studies had somewhat larger effects than earlier studies (g = 0.02), and peer 

reviewed studies reported larger effects than dissertations (g = 0 .27; β = .14).  
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Although interesting, these distinctions were not considered theoretically useful as 

controls and thus were not carried forward in model development.  We did consider 

measurement characteristics, student grade level, and treatment characteristics as 

potentially relevant for model development. Effects from norm-referenced measures of 

mathematics proficiency were generally smaller than those from researcher-developed 

measures (g = -0 .35; β = -0.23). This replicates an earlier finding by Swanson & 

Hoskyn (1998). Effects for measures of word problems were associated with much 

larger effects than those from other domains (g = 0.42; β = 0.28). Studies addressing 

older students had generally smaller effects than those for younger students, with effect 

sizes decreasing .07 standard deviations per grade level increase (g = - 0.07; β = -

0.23).   

Treatments having a longer duration yielded generally smaller effects (g = -

0.003; β = -0.19) than brief duration studies. The number of treatment sessions 

correlated negatively with effect size (β = -0.19), indicating longer treatments were 

generally less effective.  However, the choice of the interventionist (whether a member 

of a research team or a classroom teacher) appeared to have minimal impact on 

treatment outcomes (β = 0.16).  

 A subset of these method moderators correlating with treatment effects was then 

tested simultaneously by regression analysis. This preliminary set of moderators was 

then reduced even further to include only those that remained statistically significant 

when considered jointly in this regression analysis. This final set of control moderators 

thus selected included (a) whether or not the control group received any mathematics 
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instruction relevant to the outcome measures (g = -0.63; β = -0.22), (b) use of norm 

referenced measures as an outcome (g = -0.21; β = -0.13), (c) use of word problems 

as an outcome (g = 0.37; β = 0.25) and (d) grade level of students (g = -0 .07; β = -

0.23). Before considering treatment intervention components, these method moderators 

accounted for 27% of total between-study variance, but left a substantial amount of 

variance unexplained (Qresidual(36) = 108.64; p < .01).   

Thus a final comparison of treatment intervention components was tested while 

controlling for these three factors.  Among these moderators only the presence of a 

norm referenced mathematics outcome measure remained significant for explaining 

effect size variation after entering treatment components (see Table 2). 

The Relation of Treatment Interventions to Effect Size 

Previously we considered each instructional component separately.  However, 

many of the studies in the set included multiple instructional components, that is, they 

were overlapping or non-exclusive components. For example, a study might have 

included both explicit instruction and teacher use of visual representations. In order to 

analyze treatments as components a series of dummy codes were examined 

representing the 12 instructional components  (for e.g., explicit instruction, 

verbalizations) and tested simultaneously controlling for method and treatment 

characteristics. While this moderated treatment model accounted for the majority of 

between-study variance in g (Qmodel (16) = 100.06; p <.001; R2 = .69), the unexplained 

residual variance in g was also large suggesting unconsidered factors contributed to 

observed effects (Qresidual (24) = 49.63, p = .002) necessitating a mixed-weight analysis.  
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As indicated by B-weights and confidence intervals presented in Table 2, majority 

of contrasts did not deviate significantly from the intercept. In other words, they were not 

significantly different from the mean effect size of 0.51. However, there were several 

exceptions. Use of heuristics was associated with an effect increase of 1.21 above the 

average adjusted effect of 0.51 (p < .001). Studies incorporating explicit instruction had 

larger treatment effects as well (g = 0.53; p < .05). At the other extreme, use of 

visuals by teachers only or by teachers and students together was associated with 

negligible predicted impacts (- 0.17 or -0.15, respectively) that were smaller than other 

treatments (p = .06). It appears that this component was not effective unless combined 

with other instructional components (e.g., explicit instruction, careful sequencing of 

examples). The impact of the instructional component cross-age tutoring approached 

significance, p < .10.  It is noteworthy that treatment components varied widely in the 

number of associated effects and observations contributing to the standard error 

associated with each (see Table 2). The large effects associated with cross-age tutors 

despite poor precision indicate the potential of this treatment component.  

Discussion 

The major focus of this meta-analysis was on analyzing instructional components 

in mathematics intervention studies conducted with students with learning disabilities. 

Each intervention study was coded for a series of instructional components. We 

operationalized instruction broadly, using common dimensions from contemporary 

curriculum analysis (e.g., think alouds, explicit instruction, teaching of multiple 

heuristics, sequencing of examples) as well as other key aspects of instruction that 
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transcend specific curricula (e.g., peer-assisted learning, formative assessment). Most 

interventions contained two, three, or even four of these components. 

We analyzed specific instructional components because we saw little benefit in 

analyzing interventions based on specific researcher developed programs or practices. 

Our interest was in the detailed curriculum design and teaching practices that resulted in 

enhanced mathematics proficiency. In this way, our work resembled the seminal meta-

analysis of intervention research for students with LD conducted by Swanson and 

Hoskyn (1998). However, a major difference between our analysis and the analysis 

conducted by Swanson and Hoskyn is that we limited the domain to instructional 

interventions in mathematics allowing us to focus on essential attributes of effective 

practice. 

We examined the effectiveness of each instructional component at first in 

isolation. As each intervention can be conceived as a unique set of instructional 

components, we built a model using a series of hierarchical multiple regressions to 

discern the relative impact of each component. When examined individually, results 

indicated that only two instructional components did not yield a mean effect size 

significantly greater than zero: a) asking students to set a goal and measure attainment 

of that goal and b) peer-assisted learning within a class. All other instructional 

components that appear in Table 1 produced significant positive impacts on 

mathematics proficiency. The instructional components did however vary greatly in their 

effects, ranging from mean effect sizes of 0.14 to 1.56.  
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The small non-significant findings for goal setting may indicate that students with 

LD–who struggle with organizing abstract information–are simply overwhelmed by the 

abstractness of setting a reasonable goal and measuring attainment of that goal. 

Perhaps they become frustrated and demoralized by their low rate of progress or even 

one data point that happens to be particularly low on a given day. Although peer-

assisted learning in a classroom did not harm students with LD, the average benefit was 

meager (0.14) and not significantly different than zero. Interestingly, within classroom 

peer-assisted learning produced a statistically significant impact with low achieving 

students (Baker et al., 2002). This apparent discrepancy may be influenced by the fact 

that students with LD are simply so far below the average performance of their 

classmates that feedback and prompting from a peer is insufficient to help them 

understand concepts that are difficult for them. In contrast, tutoring by a well-trained 

older student or adult appears to accelerate mathematics proficiency significantly. 

When the instructional components were contrasted with each other in the 

regression analysis (Table 2), we found a majority of the instructional components to be 

non-significant. This does not imply that the instructional components were ineffective, 

but rather that they offered obvious advantage or disadvantage compared to other 

instructional components and were associated with average effects for the population of 

effects sampled in this study. Two instructional components provided significant, unique 

contributions– teaching students use of heuristics to solve problems and explicit 

instruction (which teaches one approach to a given problem type but also addresses 
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distinguishing features of that problem type). The unique contribution of expert cross-

age tutors was marginally significant.  

Some of the findings highlighted in this meta-analysis are consonant with 

recommendations made in the practice guide on “Organizing Instruction and Study to 

Improve Student Learning” (Pashler, et al., 2007) developed for Institute of Education 

Sciences, based on recent findings from cognitive research. For example, the authors 

concluded that use of graphic presentations to illustrate new processes and procedures, 

and encouraging students to think aloud in speaking or writing their explanations tend to 

be effective across disciplines. They also suggest teaching both abstract and concrete 

representations of concepts, as the former facilitated initial learning while the later 

enhanced performance in new contexts. Similar outcomes were also observed in 

Swanson and Hoskyn’s (1998) meta-analysis of instructional research for students with 

LD. They found that direct instruction and cognitive strategy instruction tended to 

produce positive outcomes across all instructional disciplines. Also, Xin and Jitendra 

(1999) found beneficial impacts for representation techniques and strategy training, as 

was the case in this meta-analysis. 

Role of Methodological and Study Characteristics 

The role of methodological and study characteristics (e.g., relevant control group, 

type of design, type of measures used, student grade level, treatment characteristics) 

was assessed independently and simultaneously in our regression analysis. The 

estimated influence of many of these variables was statistically significant when tested 

individually; but when tested simultaneously, only the presence of norm-referenced 
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measures approached significance for explaining effect size variation (p < .10). We 

found, as did Swanson and Hoskyn (1998), that use of norm-referenced achievement 

tests led to significant decreases in effect size. Typically, the norm referenced measures 

were less closely aligned to the content taught, and resulted in a significant negative 

regression coefficient of -0.44, meaning that overall, impacts on norm-referenced 

measures were lower than on researcher-developed measures. Effects for measures of 

word problems were associated with much larger effects than those from other domains. 

However, when all outcomes were tested simultaneously, the difference was found to 

be non-significant (p = .19). We speculate on several possible reasons for the larger 

impact. One reason could be that 12 out of the13 word problem measures were also 

researcher-developed measures, and, as previously discussed, the researcher-

developed measures were typically more closely aligned with the content taught and 

resulted in larger effect sizes (p = .06). On the other hand, it is possible that the 

interventions involving instruction in word problem tended to be among the most 

effective in the set of studies. Many were quite contemporary and reflected insights from 

cognitive psychology in innovative ways.  

When tested in isolation, effect sizes decreased .07 standard deviations per 

grade level increase (p < .05). However when evaluated conditionally with other 

moderators, grade level no longer accounted for the effect size above chance variation 

(p = .76). In coding the studies, we noted that in a small number of cases the 

mathematics content that was taught systematically and thoroughly to the experimental 

students was only covered in a cursory fashion with the control students. We 
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determined if the content covered in the control group was consistently relevant or 

minimally relevant to the purpose of the study. Regression coefficients were not 

significantly different than zero in both instances. 

Implications of the Instructional Components Analysis for Improving Practice  

We would like to draw attention to five instructional components in order of 

importance. All these components had significant effect sizes.  

Explicit instruction. Explicit instruction, a mainstay feature in many special 

education programs, once again was a key feature of many studies included in this 

meta-analysis. To create a common basis for comparisons, we defined explicit 

instruction in the following way: (a) the teacher demonstrated a step-by-step plan 

(strategy) for solving the problem; (b) the plan was problem-specific and not a generic, 

heuristic guide for solving problems; and (c) students were actively encouraged to use 

the same procedure/steps demonstrated by the teacher. Explicit instruction was often 

implemented in conjunction with other instructional components (for e.g., visual 

representations, student verbalizations) in many of the studies we reviewed. 

Overall, the studies that used explicit instruction as an instructional delivery tool 

resulted in significant effects and produced a mean effect size of 1.22. Data from the 

multiple regression analysis strongly suggest that explicit instruction consistently 

contributed to the magnitude of effects regardless of whether it was paired with other 

instructional components. These findings confirm that explicit instruction is an important 

tool for teaching mathematics to students with learning disabilities. 
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Given its potential to impact student math performance, it is important to explore 

the evolution of the term explicit instruction. The meaning of explicit instruction has 

shifted over the years from behavioral and cognitive-behavioral interventions that were 

in essence content free to principles of Direct Instruction (e.g., Engelmann & Carnine, 

1982) in which explicit teaching is content driven (e.g., mathematics) through the 

optimal sequencing of examples to help students understand critical features in the 

discipline. However, like the behavioral models, this approach is not rooted in the 

research from child development or the work of mathematics educators. Several recent 

studies (e.g., Owen & Fuchs, 2002; Woodward, 2006; Xin et al., 2005) artfully integrate 

research from child development and mathematics education with the direct instruction 

tradition, a tradition that continues to play a major role in special education research.  

While these findings confirm that explicit instruction is an important tool for 

teaching mathematics to students with learning disabilities, it is important to note that 

there is no evidence supporting explicit instruction as the only mode of instruction for 

these students.  There is good reason to believe that the construct of explicit instruction 

will continue to evolve in both research and practice, and the breakdown between 

explicit instruction and use of heuristics will continue to blur future research studies and 

practice.  

Visual representations. Teachers have used visual representations of problems 

to illustrate solution strategies for mathematical problems intuitively for many years. Our 

findings from the meta-analysis do support the use of visual representations by teachers 

and students. When used in isolation, use of visuals during instruction led to consistent 
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significant effects (mean g = 0.47). However, the multiple regression analysis suggests 

that better effects were obtained when visuals were used in combination with other 

instructional components than when used alone. For example, studies in which visuals 

were not paired with other instructional components (D. Baker, 1992; Lambert, 1996; 

Manalo et al., 2000) resulted in lesser impacts than studies in which visuals were paired 

with other instructional components.  

Results also suggest that the specificity of the visuals plays a major role in how 

they affect learning. For example, Xin et al. (2005) had two conditions that used visuals; 

however, the experimental group was exposed to a visual that was more specific and 

based on our understanding of how experts solve mathematical problems. Also in the D. 

Baker (1992) study, students were given multiple visuals but not directed on which ones 

to use. This less specific approach resulted in a smaller impact, supporting the 

hypothesis regarding visual specificity. (Future researchers may want to examine the 

role of visual specificity.) In general, visual diagrams resulted in bigger positive effects 

when visuals were part of a multi-component approach to instruction.  

The use of visual representations is also being emphasized in the field of 

mathematics education; for example, there is an increased emphasis by 

mathematicians on the importance of the number line, which attempts to provide early 

grounding in the concept that mathematics problems have a visual foundation. Also, 

Witzel et al. (2003) cite the work of Bruner, who argued that mathematical principles are 

best understood by having students work with concrete objects, and then transferring 

this knowledge systematically to graphic representations and, finally, to abstract 
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arithmetic symbols. Thus, the results of the present meta-analysis confirm what 

teachers have sensed for many years; using graphic representations and teaching 

students how to understand them can help students with LD. 

Sequence and/or range of examples. Thoughtfully planning instruction in 

mathematics, by carefully selecting and sequencing instructional examples appears to 

impact mathematics performance. The mean effect size for this group of studies was 

0.82. The regression analysis indicated that this instructional component produced a 

regression weight of 0.42.   

We believe that the sequence of examples may be most important during early 

acquisition of new skills when scaffolding is critical for student success. The range of 

examples taught is probably most critical to support transfer of newly learned skills. In 

other words, if the teacher teaches a wide range of examples, it will result in the learner 

being able to apply a skill to a wider range of problem types. Given the nature of 

students’ concerns about their ability to be successful, early success with new concepts 

and problems can be supported by sequencing examples and problems with increasing 

complexity and ensuring that students have an opportunity to apply their knowledge to 

the widest range of problems to promote transfer of their knowledge to unfamiliar 

examples. 

Consideration of sequence and range of examples presented is also highlighted 

in the seminal works on effective instruction by Engelmann and Carnine (1982) and also 

serves as a major priority area in the lesson study professional development model 

discussed by Lewis, Perry, and Murata (2006). Both of these planning devices, 
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sequence of examples and range of examples, should be considered carefully when 

teaching students with LD.  

Student verbalizations. Many students with learning disabilities are impulsive 

behaviorally and when faced with multi-step problems frequently attempt to solve the 

problems by randomly combining numbers rather than implementing a solution strategy 

step-by-step (Fuchs et al., 2003). One very promising finding is that the process of 

encouraging students to verbalize their thinking or their strategies, or even the explicit 

strategies modeled by the teacher, was always effective (mean g = 1.04). This included 

generic problem solving strategies that were derived from cognitive psychology as well 

as the more “classic” direct/explicit instruction strategies where students were taught 

one specific way to solve a problem. Although the meta-analysis did not suggest that 

thinking aloud made a unique contribution to effectiveness, we need to keep in mind 

that both explicit instruction and use of heuristics almost invariably involve 

encouragement of student verbalization.  

Verbalization may help to anchor skills and strategies both behaviorally and 

mathematically. The consistently positive effects suggest that verbalizing steps in 

problem solving may be addressing students’ impulsivity directly; suggesting that 

verbalization may serve to facilitate students’ self-regulation during problem solving. 

Unfortunately, it is not common to see teachers encouraging verbalization in special 

education. Our findings would suggest that it is important to teach students to use 

language to guide their learning. 
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Providing ongoing feedback. One clear finding was that providing teachers 

with specific information on how each student was performing enhanced student math 

achievement (mean g = 0.23).  Furthermore, providing specific information to special 

educators produced even stronger effects. Regarding the added benefit with special 

educators, it may that because special education teachers are prepared to use detailed 

student performance data to set individual goals for students, their familiarity with using 

information on performance is particularly useful for this group.  

Providing general education teachers with detailed information on progress for 

the students with disabilities in their class had, on average, an extremely small impact 

on student performance. In addition to general education teachers being less familiar 

with data than special education teachers, there are several additional reasons for the 

smaller effect. It may be that the content of the math curricula is too difficult for the 

students with learning disabilities. A series of observational studies of mathematics 

instruction with students in the intermediate grades (Williams & Baxter, 1996; 

Woodward & Baxter, 1997) suggests that there is often misalignment between students’ 

instructional level and their knowledge and skills. Another factor is that the few studies 

in this category were large-scale field experiments, which tend to produce smaller 

effects. Variation in implementation quality may have dampened the impact.  

In summary, findings converge regarding the practice of providing teachers with 

precise information on student progress and specific areas of students’ strengths and 

weaknesses in mathematics for enhancing achievement for this population. This is likely 

to be particularly true if the information as to which topics or concepts require additional 
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practice or re-teaching is precise. It appears that teachers and students also benefit if 

the teachers are given specific guidance on addressing instructional needs or curricula 

so that they can immediately provide relevant instructional material to their students. As 

schools or districts begin developing and implementing progress monitoring systems in 

mathematics, it might be beneficial if they include not only graphs of student 

performance, but specific instructional guidelines and curricular materials for teachers or 

other relevant personnel (special educators who may co-teach or provide support 

services, peer tutors, cross-age tutors, adults providing extra support) to use with 

particular students. 

Likewise, providing students with LD with similar feedback about their 

performance produced small impacts. It is interesting to note though that the largest 

effect in this category was related to non-specific feedback on effort, rather than on 

specific performance. One possible benefit of effort related feedback could be that it 

encourages and motivates students with LD to stay on tasks that they find frustrating. 

However, given that only one study examined the issue of effort related feedback, this 

approach merits further research attention. Essential to note also is that there seems to 

be no benefit in providing students with LD specific feedback that is specifically linked to 

their goal attainment.  

Future Research Needs 

Meta-analysis is essentially ahistorical because it treats each study as a data 

source and attempts to impartially locate the impact of various instructional approaches 
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or components. Yet, as we reviewed the findings, several important historical trends 

emerged that help us interpret the findings.   

Use of heuristics. We begin by noting that heuristic strategies provided a mean 

effect size  of 1.56 and make a unique contribution to the effectiveness of an 

intervention. The heuristics used in these studies addressed a key problem for many 

students with LD – a weak ability to organize abstract information and to remember 

organizational frameworks or schema. A distinguishing feature of this set of studies was 

the accompanying student verbalizations. Students were given opportunities to 

verbalize their solutions or talk through the decisions they made in choosing a 

procedure. They were also asked to reflect on their attempts to solve problems and the 

decisions they made. The underlying concept is that through this process of 

verbalization and reflection, students with learning disabilities appear to arrive at a 

higher level of understanding and gain important insights into mathematical principles.  

One of the most appealing aspects of this line of research is that it reflects the 

2001 report from the National Research Council, Adding it Up, where there is a clear 

emphasis on teaching students the flexible use of multiple strategies. It also can, and 

often does, include insights gained from developmental psychology on how students 

develop mathematical knowledge and the nature of mathematical disabilities (e.g., 

Geary, 2005). This approach differs from the guided inquiry approach present in several 

widely used mathematics curricula in that students see many models for solving 

problems before they are asked to figure out the best procedure to use. However, part 
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of each lesson in the traditional guided inquiry curricula does involve discussion of 

reasons for the choice the students make. 

Given the small number of studies in this set, one should not overgeneralize the 

beneficial impacts. What remains unclear about the heuristic strategy approach is 

whether it involves teaching a multi-step strategy or teaching multiple skills that can be 

employed to derive the solution to a problem. Also, the success of this approach 

appears, at least on the surface, to be at odds with the notion that students with LD 

have difficulty with cognitively demanding routines. The flexible use of heuristic 

strategies would seem to place a cognitive load on students with LD that would make 

learning difficult. For example, the practical implication may be that learning 7 X 8 as a 

memorized fact may be less cognitively demanding than learning to decompose 7 X 8 

as (7 X 7) + (7 X 1) making memorization a more effective tool. It is not entirely clear 

why this approach was so successful. This should be explored in future research.  

Another important step in this line of research is to assess whether students can 

transfer and generalize to previously untaught problem types, and whether these 

approaches actually do succeed in building an understanding of the underlying 

mathematical principles (e.g., an understanding of the distributive property).  

Peer-assisted mathematics instruction. For students with LD, within class 

peer-assisted learning has not been as successful as it has been with other populations 

of students. However, part of the potential benefit could be that the structure and format 

of peer-assisted learning provides a natural and obvious way for students to engage in 

mathematics discourse that does appear to be beneficial for students with learning 
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disabilities. We believe it is the use of mathematical language that may explain why in 

some cases peer tutoring activities can be successful. This is potentially very important 

if our hunches about the importance of verbalization we described in the previous 

section are true. 

Our interpretation of significant findings in this meta-analysis is related to other 

findings regarding the degree of explicitness and scaffolding that appears to support the 

mathematics development of students with LD. It seems likely that peer tutoring efforts 

may fall short of the level of explicitness necessary to effectively help students with LD 

progress. This interpretation is supported by the more positive effects of cross-age peer 

tutoring wherein the tutor is an older student who has received extensive training in how 

to provide tutoring. Although there are relatively few studies in this area, cross-age 

tutoring appears to work more effectively.  It may be that this is because the older tutor 

is better able to engage the learner in meaningful mathematical discourse.  Practically 

speaking, however, cross-age tutoring presents practical logistical difficulties for 

implementation.  Future research should explore the impact of peer-assisted instruction 

(cross-age and within classroom) when it is linked with a very strong explicit instruction 

component.  

Limitations of Meta-analysis 

The meta-analysis included studies identified from two literature searches (1971-

1999; 2000-2007). During the second search dissertations were excluded from the 

search. This differential search procedure (i.e., the exclusion of dissertations in the 

second more recent search) might have resulted in an upward bias in the effect sizes as 
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peer-reviewed studies reported larger effects than dissertations, or in a downward bias 

in effect sizes as recent studies had somewhat larger effects than earlier studies. 

However, a t-test indicated that that the effect sizes for dissertations were not 

significantly different than the effect sizes for peer-reviewed studies, t(40) = -.524, p = 

.60. Another limitation relates to the coding categories in the study. The conceptual 

framework underlining the coding categories  (e.g., explicit instruction, use of visuals, 

etc) was influenced by three of the authors who have significant experience in effective 

classroom design and instruction. A behavioral background would have resulted in other 

coding perspectives (e.g., reinforcement, feedback, and drill repetitions). Finally, the 

findings of this meta-analysis could be an artifact of the particular sample of studies we 

used, and because many studies included multiple components, isolating the unique 

contribution of visual representations during instruction is a significant challenge under 

the best of circumstances. 

Conclusions  

Authors of the studies – as do all authors of intervention research – struggle to 

find the precise language for describing what they attempted to do in the instructional 

intervention. By coding studies according to these major themes, we attempted to begin 

to unpack the nature of effective instruction for students with learning disabilities in 

mathematics. Certainly, we need to do a good deal of additional unpacking to more fully 

understand the nature of the independent variable(s).  As instructional researchers work 

more closely with mathematicians and cognitive psychologists, we believe this 

unpacking of major themes will continue.  



 

 

64 

However, the next major task is, in our view, increased use of the instructional 

components or techniques to tackle areas that are particularly problematic for students 

with LD such as word problems, concepts and procedures involving rational numbers, 

and understanding of the properties of whole numbers such as commutativity. The set 

of studies included in this meta-analysis indicates that we do have the instructional tools 

to address these content areas in mathematics. These topics will be critical areas as we 

move towards response–to-intervention models and three-tiered instruction for student 

in the area of mathematics.



 

 

65 

 

References 

References marked with an asterisk indicate studies included in the meta-analysis. 

*Allinder, R. M., Bolling, R., Oats, R., & Gagnon, W. A. (2000). Effects of teacher self-

monitoring on implementation of curriculum-based measurement and 

mathematics computation achievement of students with disabilities. Remedial 

and Special Education, 21, 219-226. 

*Bahr, C. M., & Rieth, H. J. (1991). Effects of cooperative, competitive, and 

individualistic goals on student achievement using computer-based drill-and-

practice. Journal of Special Education Technology, 11, 33-48. 

*Baker, D. E. (1992). The effect of self-generated drawings on the ability of students 

with learning disabilities to solve mathematical word problems. Unpublished 

doctoral dissertation, Texas Tech University. 

Baker, S., Gersten, R., & Lee, D. (2002). A synthesis of empirical research on teaching 

mathematics to low-achieving students. Elementary School Journal, 103, 51-73. 

Baker, S., Gersten, S., & Scanlon, D. (2002). Procedural facilitators and cognitive 

strategies: Tools for unraveling the mysteries of comprehension and the writing 

process, and for providing meaningful access to the general curriculum. Learning 

Disabilities Research and Practice, 17, 65-77. 

*Bar-Eli, N., & Raviv, A. (1982). Underachievers as tutors. Journal of Educational 

Research, 75, 139-143. 



 

 

66 

*Beirne-Smith, M. (1991). Peer tutoring in arithmetic for children with learning 

disabilities. Exceptional Children, 57, 330-337. 

*Bottge, B. A., Heinrichs, M., Mehta Z. D., & Hung, Y. (2002). Weighing the benefits of 

anchored math instruction for students with disabilities in general education 

classes. The Journal of Special Education, 35, 186-200. 

Brown, V., Cronin, M., & McEntire, E. (1994). Test of Mathematical Abilities – Second 

Edition. Austin, TX: PRO-ED Inc. 

Bryk, A. S., & Raudenbush, S. W. (1992). Hierarchical linear models. Newbury Park, 

CA: Sage Publications. 

Bryant, D. P., Bryant, B. T., & Hammill, D. D. (2000). Characteristic behaviors of 

students with LD who have teacher-identified math weaknesses. Journal of 

Learning Disabilities, 33, 168-177, 199. 

Busse, R. T., Kratochwill, T. R., & Elliott, S. N. (1995). Meta-analysis for single-case 

consultation outcomes: Applications to research and practice. Journal of School 

Psychology, 33, 269-286. 

*Butler, F. M., Miller, S. P., Crehan, K., Babbitt, B., & Pierce, T. (2003). Fraction 

instruction for students with mathematics disabilities: Comparing two teaching 

sequences. Learning Disabilities Research and Practice, 18, 99-111. 

*Calhoon, M. B., & Fuchs, L., S. (2003). The effects of peer-assisted learning strategies 

and curriculum-based measurement on the mathematics performance of 

secondary students with disabilities. Remedial and Special Education, 24, 235-

245. 



 

 

67 

Cawley, J. F., Parmar, R. S., Yan, W., & Miller, J. H. (1998). Arithmetic computation 

performance of students with learning disabilities: Implications for curriculum. 

Learning Disabilities Research & Practice, 13, 68-74. 

Cooper, H., & Hedges, L. V. (Eds.). (1994). Handbook of research synthesis. New York: 

Russell Sage Foundation. 

Cortina, J. M., & Nouri, H. (2000). Effect size for ANOVA designs (Vol. 129). Thousand 

Oaks, CA: Sage Publications Inc. 

Donner, A., & Klar, N. (2000). Design and analysis of cluster randomized trials in health 

research. London: Arnold Publishing. 

Engelmann, S., & Carnine, D. (1982). Theory of instruction. New York: Irvington. 

Friedman, F. (1992). An evaluation of the integrated cognitive-behavioral model for 

improving mathematics performance and attentional behavior of adolescents with 

learning disabilities and attention-deficit hyperactivity disorders. Unpublished 

doctoral dissertation, Columbia University Teachers College. 

Fuchs, L.S., Compton, D. L., Fuchs, D., Paulsen, K., Bryant, J.D., & Hamlett, C.L. 

(2005). The Prevention, Identification, and Cognitive Determinants of Math 

Difficulty. Journal of Educational Psychology, 97, 493-513. 

Fuchs, L.S., & Fuchs, D. (2003). Enhancing the mathematical problem solving of 

students with mathematics disabilities. In H.L. Swanson, K.R. Harris, & S.E. 

Graham (Eds.), Handbook on learning disabilities (pp. 306-322). New York: 

Guilford.  



 

 

68 

Fuchs, L. S., Fuchs, D., Hamlett, C. L. (1989). Effects of alternative goal structures 

within curriculum-based measurement. Exceptional Children, 55, 429-438. 

*Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Appleton, A. C. (2002). Explicitly teaching for 

transfer: Effects on the mathematical problem-solving performance of students 

with mathematics disabilities. Learning Disabilities Research and Practice, 17, 

90-106. 

*Fuchs, L. S., Fuchs, D., Hamlett, C. L., Phillips, N. B., & Bentz, J. (1994). Classwide 

curriculum-based measurement: Helping general educators meet the challenge 

of student diversity. Exceptional Children, 60, 518-537. 

*Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Stecker, P. M. (1990). The role of skills 

analysis in curriculum-based measurement in math. School Psychology Review, 

19, 6-22. 

*Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Stecker, P. M. (1991). Effects of curriculum-

based measurement and consultation on teacher planning and student 

achievement in mathematics operations. American Educational Research 

Journal, 28, 617-641. 

*Fuchs, L. S., Fuchs, D., Hamlett, C. L., & Whinnery, K. (1991). Effects of goal line 

feedback on level, slope, and stability of performance within curriculum-based 

measurement. Learning Disabilities Research and Practice, 6, 65-73. 

*Fuchs, L. S., Fuchs, D., Karns, K., Hamlett, C. L., Katzaroff, M., & Dutka, S. (1997). 

Effects of task-focused goals on low-achieving students with and without learning 

disabilities. American Educational Research Journal, 34, 513-543. 



 

 

69 

Fuchs, D., Fuchs, L. S., Mathes, P. G., & Lipsey, M. W. (2000). Reading differences 

between underachievers with and without learning disabilities: A meta-analysis. 

In E. Schiller & S. Vaughn (Eds.), Research syntheses in special education. 

Mahwah, NJ: Lawrence Erlbaum Associates. 

*Fuchs, L. S., Fuchs, D., Phillips, N. B., Hamlett, C. L., & Karns, K. (1995). Acquisition 

and transfer effects of classwide peer-assisted learning strategies in 

mathematics for students with varying learning histories. School Psychology 

Review, 24, 604-620. 

*Fuchs, L. S., Fuchs, D., Prentice, K. (2004). Responsiveness to mathematical problem-

solving instruction: Comparing students at risk of mathematics disability with and 

without risk of reading disability. Journal of Learning Disabilities, 37, 293-306.  

Fuchs, L. S., Fuchs, D., Prentice, K., Burch, M., Hamlett, C. L., Owen, R., et al. (2003). 

Enhancing third-grade students’ mathematical problem solving with self-regulated 

learning strategies. Journal of Educational Psychology, 95, 306-315.  

*Fuchs, D., Roberts, P. H., Fuchs, L. S., & Bowers, J. (1996). Reintegrating students 

with learning disabilities into the mainstream: A two-year study. Learning 

Disabilities Research and Practice, 11, 214-229. 

Fuchs, L. S., Fuchs, D., Yazdian, L., & Powell, S. R. (2002). Enhancing first-grade 

children’s mathematical development with peer-assisted learning strategies. 

School Psychology Review, 31, 569 –583. 



 

 

70 

Fuson, K. C., & Willis, G. B. (1989). Second graders’ use of schematic drawings in 

solving addition and subtraction word problems. Journal of Educational 

Psychology, 81, 514-520.  

Geary, D. C. (2003). Learning disabilities in arithmetic: Problem solving differences and 

cognitive deficits. In K. Harris & S. Graham (Eds.), Handbook of learning 

disabilities (pp. 199-212). New York: Guilford Publishers.  

Geary, D. C. (2005). Role of cognitive theory in study of learning disability in 

mathematics. Journal of Learning Disabilities, 38, 305-307. 

Gersten, R., & Baker, S. (2001). Teaching expressive writing to students with learning 

disabilities: A meta-analysis. Elementary School Journal, 101, 251-272. 

Gersten, R., Baker, S. K., Pugach, M., Scanlon, D., & Chard, D. (2001). Contemporary 

research on special education teaching. In V. Richardson (Ed.), Handbook for 

research on teaching (4th ed., pp. 695-722). Washington, DC: American 

Educational Research Association. 

Gersten, R., Clarke, B., & Mazzocco, M. (2007). Chapter 1: Historical and contemporary 

perspectives on mathematical learning disabilities.  In D.B. Berch & M.M.M. 

Mazzocco (Eds.), Why is math so hard for some children? The nature and origins 

of mathematical learning difficulties and disabilities (pp. 7-29). Baltimore, MD: 

Paul H. Brooks Publishing Company. 

Gersten, R., & Hitchcock, J. (2008). What is credible evidence in education: The role of 

What Works Clearinghouse in informing the process. In S. I. Donaldson, C. A. 



 

 

71 

Christie, & M. M. Mark (Eds.), What counts as credible evidence in applied 

research and evaluation practice? Thousand Oaks, CA: Sage Press. 

Gleser, L. J., & Olkin, I. (1994). Stochastically dependent effect sizes. In H. Cooper & L. 

V. Hedges (Eds.), The Handbook of Research Synthesis (pp. 339-355). New 

York: Russell Sage Foundation. 

Graham, S., & Harris, K. (2003). Students with learning disabilities and the process of 

writing; A meta-analysis of SRSD studies. In H. L. Swanson, K. R. Harris, & S. 

Graham (Eds.), Handbook of learning disabilities (pp. 323–344). New York: 

Guilford Press.  

Greene, G. (1999). Mnemonic multiplication fact instruction for students with learning 

disabilities. Learning Disabilities Research and Practice, 14, 141-148. 

Griffin, S. A., Case, R., & Siegler, R. S. (1994). Rightstart: Providing the central 

conceptual prerequisites for first formal learning of arithmetic to students at risk 

for school failure. In K. McGilly (Ed.), Classroom lessons: Integrating cognitive 

theory and classroom practice (pp. 24-49). Cambridge, MA: MIT Press. 

Gross-Tsur V., Manor O.,  & Shalev, R. S. (1996) Developmental dyscalculia: 

Prevalence and demographic features. Developmental Medicine and Child 

Neurology, 38, 25–33. 

Hedges, L.V. (1981). Distribution theory for Glass’s estimator of effect size and related 

estimators. Journal of Educational Statistics, 6, 107-128. 



 

 

72 

Hedges, L. V., & Hedberg, E. C. (2007). Intraclass correlation values for planning group-

randomized trials in education. Educational Evaluation and Policy Analysis, 29, 

60-87. 

Hedges, L. V.,  & Olkin, I. (1985). Statistical methods for meta-analysis. San Diego, CA:  

Academic Press.  

*Hutchinson, N. L. (1993). Effects of cognitive strategy instruction on algebra problem 

solving of adolescents with learning disabilities. Learning Disability Quarterly, 16, 

34-63.  

Jastak, S., & Wilkinson, G. (1984). Wide Range Achievement Test-Revised. Wilmington, 

DE: Jastak Associates. 

Jenkins, A. A. (1992). Effects of a vocational mathematics curriculum on achievement of 

secondary learning-disabled students. Unpublished doctoral dissertation, 

University of Texas at Austin. 

*Jitendra, A. K., Griffin, C. C., McGoey, K., & Gardill, M. G. (1998). Effects of 

mathematical word problem solving by students at risk or with mild disabilities. 

The Journal of Educational Research, 91, 345-355. 

*Kelly, B., Gersten, R., & Carnine, D. (1990). Student error patterns as a function of 

curriculum design: Teaching fractions to remedial high school students with 

learning disabilities. Journal of Learning Disabilities, 23, 23-29. 

Kroesbergen, E. H., & Van Luit, J. E. H. (2003). Mathematics interventions for children 

with special educational needs: A meta-analysis. Remedial and Special 

Education, 24, 97-114. 



 

 

73 

*Lambert, M. A. (1996). Teaching students with learning disabilities to solve word-

problems: A comparison of a cognitive strategy and a traditional textbook 

method. Unpublished doctoral dissertation, Florida Atlantic University. 

*Lee, J. W. (1992). The effectiveness of a novel direct instructional approach on math 

word problem solving skills of elementary students with learning disabilities. 

Unpublished doctoral dissertation, Ohio State University. 

Lewis, C., Perry, R., Murata, A. (2006). How should research contribute to instructional 

improvement? Case of lesson study. Educational Researcher, 35, 3-14. 

Lipsey, M. W., & Wilson, D. E. (2001). Practical meta-analysis. Thousand Oaks, CA: 

Sage. 

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah: Lawrence 

Erlbaum Associates, Inc. 

Maccini, P., & Hughes, C. A. (1997). Mathematics interventions for adolescents with 

learning disabilities. Learning Disabilities Research and Practice, 12, 168-176. 

*Manalo, E., Bunnell, J., & Stillman, J. (2000). The use of process mnemonics in 

teaching students with mathematics learning disabilities. Learning Disability 

Quarterly, 23, 137-156. 

*Marzola, E. (1987). An arithmetic verbal problem solving model for learning disabled 

students. New York: Columbia University Teachers College. 

Mastropieri, M. A., Scruggs, T. E., & Shiah, S. (1991). Mathematics instruction for 

learning disabled students: A review of research. Learning Disabilities Research 

and Practice, 6, 89-98. 



 

 

74 

Miller, S. P., Butler, F. M., & Lee, K. (1998). Validated practices for teaching 

mathematics to students with learning disabilities: A review of literature. Focus on 

Exceptional Children, 31, 1-24. 

National Research Council (NRC) (2001). Adding it up: Helping children learn 

mathematics. In J. Kilpatrick, J. Swafford & B. Findell (Eds.), Mathematics 

Learning Study Committee, Center for Education, Division of Behavioral and 

Social Sciences and Education. Washington, D.C.: National Academy Press. 

National Mathematics Panel. (n.d.). Retrieved January 29, 2008, from 

http://www.ed.gov/about/bdscomm/list/mathpanel/index.html 

*Omizo, M. M., Cubberly, W. E., & Cubberly, R. D. (1985). Modeling techniques, 

perceptions of self-efficacy, and arithmetic achievement among learning disabled 

children. The Exceptional Child, 32, 99-105. 

Ostad, S. A. (1998). Developmental differences in solving simple arithmetic word 

problems and simple number-fact problems: A comparison of mathematically 

disabled children. Mathematical Cognition, 4, 1-19. 

*Owen, R. L., & Fuchs, L. S. (2002). Mathematical problem-solving strategy instruction 

for third-grade students with learning disabilities. Remedial and Special 

Education, 23, 268-278. 

Palincsar, A. S. (1986). The role of dialogue in providing scaffolded instruction. 

Educational Psychologist, 21, 73-98. 

Pashler, H., Bain, P., Bottge, B., Graesser, A., Koedinger, K., McDaniel, M., et al. 

(2007) Organizing Instruction and Study to Improve Student Learning (NCER 



 

 

75 

2007-2004). Washington, DC: National Center for Education Research, Institute of 

Education Sciences, U.S. Department of Education. Retrieved from 

http://ncer.ed.gov. 

*Pavchinski, P. (1988). The effects of operant procedures and cognitive behavior 

modification on learning disabled students' math skills. Unpublished doctoral 

dissertation, University of Florida. 

Raudenbush, S. W., & Bryk, A. S. (2002). Applications in meta-analysis and other cases 

where level-1 variances are known. In Hierarchical linear models: applications 

and data analysis method (pp. 205-227). Thousand Oaks, CA: Sage 

Publications. 

*Reisz, J. D. (1984). The effect of goal-setting activities on the locus of control and 

achievement of learning disabled middle-school students. Unpublished doctoral 

dissertation, University of Alabama. 

Robinson, D., Schofield, J., & Steers-Wentzell, K. (2005). Peer and cross-age tutoring in 

math: Outcomes and their design implications. Educational Psychology Review, 

17, 327-362. 

Rosenthal, R., & Rubin, D. B. (1986). Meta-analytic procedures for combining studies 

with multiple effects sizes. Psychological bulletin, 99, 400-406. 

*Ross, P. A., & Braden, J. P. (1991). The effects of token reinforcement versus cognitive 

behavior modification on learning-disabled students' math skills. Psychology in 

the Schools, 28, 247-256. 



 

 

76 

*Schunk, D. H., & Cox, P. D. (1986). Strategy training and attributional feedback with 

learning disabled students. Journal of Educational Psychology, 78, 201-209. 

Seely, J., Birkes, D. (1980). Estimability in partitioned linear models. The Annals of 

Statistics, 8, 399-406. 

Shadish, W., R., Cook, T., D., & Campbell, D., T. (2002). Experimental and quasi-

experimental designs for generalized causal inference. Boston: Houghton Mifflin 

Company.  

Silbert, J., Carnine, D., & Stein, M. (1989). Direct instruction mathematics. Columbus, 

OH: Merrill. 

*Slavin, R. E., Madden, N. A., & Leavey, M. (1984a). Effects of cooperative learning and 

individualized instruction on mainstreamed students. Exceptional Children, 50, 

434-443. 

*Slavin, R. E., Madden, N. A., & Leavey, M. (1984b). Effects of team assisted 

individualization on the mathematics achievement of academically handicapped 

and non-handicapped students. Journal of Educational Psychology, 76, 813-819. 

Swanson, H. L., & Hoskyn, M. (1998). Experimental intervention research on students 

with learning disabilities: A meta-analysis of treatment outcomes. Review of 

Educational Research, 68, 277-321. 

Swanson, H. L., Hoskyn, M., & Lee, C. (1999). Interventions for students with learning 

disabilities: A meta-analysis of treatment outcomes. New York: Guilford Press. 



 

 

77 

*Tournaki, N. (1993). Comparison of two methods of teaching addition to learning 

disabled and regular education students. Unpublished doctoral dissertation, New 

York University. 

*Tournaki, N. (2003). The differential effects of teaching addition through strategy 

instruction versus drill and practice to students with and without disabilities. 

Journal of Learning Disabilities, 36, 449-458.  

* Van Luit, J. E. H., & Naglieri, J. A. (1999). Effectiveness of the MASTER program for 

teaching special children multiplication and division. Journal of Learning 

Disabilities, 32, 98-107. 

*Walker, D. W., & Poteet, J. A. (1989/1990). A comparison of two methods of teaching 

mathematics story problem-solving with learning disabled students. National 

Forum of Special Education Journal, 1, 44-51. 

What Works Clearinghouse. (2006, September 13). WWC teacher-intervention 

confound. Retrieved January, 29, 2008, from 

http://ies.ed.gov/ncee/wwc/pdf/teacher_confound.pdf 

What Works Clearinghouse. (2007, April 16). Technical details of WWC-conducted 

computations. Retrieved January, 29, 2008, from  

http://ies.ed.gov/ncee/wwc/pdf/conducted_computations.pdf 

Wilkinson, G. S. (1993). Wide Range Achievement Test, 1993 Edition. Wilmington, DE: 

Wide Range Inc. 

Williams, S. R., & Baxter, J. A. (1996). Dilemmas of discourse-oriented teaching in one 

middle school mathematics classroom. Elementary School Journal, 97, 21-38. 



 

 

78 

*Wilson, C. L., & Sindelar, P. T. (1991). Direct instruction in math word problems: 

Students with learning disabilities. Exceptional Children, 57, 512-518.  

*Witzel, B., Mercer, C. D., & Miller, M. D. (2003). Teaching algebra to students with 

learning difficulties: An investigation of an explicit instruction model. Learning 

Disabilities Research and Practice, 18, 121-131. 

Wong, B., Harris, K., Graham, S., & Butler, D. (2003). Cognitive strategies instruction 

research in learning disabilities. In H. L. Swanson, K. R. Harris, & S. Graham 

(Eds.), Handbook of learning disabilities (pp. 383– 402). New York: Guilford 

Press.  

Woodward, J., & Baxter, J. (1997). The effects of an innovative approach to 

mathematics on academically low-achieving students in mainstreamed settings. 

Exceptional Children, 63, 373-388. 

*Woodward, J., Monroe, K., & Baxter, J. (2001). Enhancing student achievement on 

performance assessments in mathematics. Learning Disabilities Quarterly, 24, 

33-46. 

Woodward, J. (2006). Developing Automaticity in multiplication facts: Integrating 

strategy instruction with timed practice drills. Learning Disability Quarterly, 29, 

269-289. 

Wortman, P. M., & Bryant, F. B. (1985). School desegregation and black achievement: 

An integrative review. Sociological Methods and Research, 13, 289-324. 



 

 

79 

Xin, Y. P., & Jitendra, A. K. (1999). The effects of instruction in solving mathematical 

word problems for students with learning problems: A meta-analysis. The Journal 

of Special Education, 32, 207-225. 

*Xin, Y. P., Jitendra, A. K., & Deatline-Buchman, A. (2005). Effects of mathematical 

word problem-solving instruction on middle school students with learning 

problems. The Journal of Special Education, 39, 181-192.  

Zimmerman, B. (2001). Theories of self-regulated learning and academic achievement: 

An overview and analysis. In B. Zimmerman & D. Schunk (Eds.), Self-regulated 

learning and academic achievement: Theoretical perspectives (2nd ed., pp. 1–

37). Mahwah, NJ: Erlbaum.  



 

 

80 

Footnotes 

 
1There were three studies (D. Baker, 1992; Fuchs, Roberts, Fuchs, & Bowers, 

1996; Slavin, Madden, & Leavey, 1984b); where randomization was imperfect. In one 

case, random assignment was conducted in all but 2 of the 5 school sites. In another, all 

but two teachers were assigned randomly. In the third case, a replacement student was 

chosen to match a student who could not participate. We considered these studies as 

RCTs for the purpose of this meta-analysis.  
2For a list of the studies associated with the various analyses in this section, 

please contact the author. 
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Table 1 
 
Simple Comparisons of All Effects (g) and Heterogeneity (Q) for Orthogonal Effects and Effects Stratified by Method 
 

 Random Effects (g)  Heterogeneity 
            

Instructional Component 

Random    
Effects 
Mean Median 

 
SE p(g) 95% CI 

 

Q 
Critical 

Q p(Q) 
     Lower  Upper     
             

Explicit Instruction (n=11) 1.22*** 1.39 0.23 0 0.78  1.67  41.68*** 18.31 0.00 

Use of Heuristics (n=4) 1.56*** 1.62 0.46 0.00 0.65   2.47  9.10* 7.82 0.03 

Student Verbalizations (n=8) 1.04*** 1.42 0.32 0.00 0.42   1.66  53.39*** 14.07 0.00 

Visuals for Teacher and Student (n=7) 0.46*** 0.67 0.12 0.00 0.23  0.69  9.88 12.59 0.13 

Visuals for Teacher only (n=5) 0.41* 0.50 0.18 0.02 0.06  0.77  4.33 9.49 0.36 

Visuals Combined (n=12) 0.47*** 0.52 0.12 0.00 0.25   0.70  14.13 19.68 0.23 

Sequence and/or Range (n=9) 0.82*** 0.54 0.20 0.00 0.42   1.21  19.78** 15.51 0.01 

Teacher Feedback (n=7) 0.21* 0.19 0.10 0.04 0.01  0.41  0.32 12.59 1.00 

Teacher Feedback plus Options (n=3) 0.34~ 0.40 0.21 0.10 -0.07  0.74  1.01 5.99 0.60 

Teacher Feedback Combined (n=10) 0.23** 0.21 0.09 0.01 0.05   0.41  1.63 16.92 1.00 

Student Feedback (n=7) 0.23** 0.17 0.09 0.01 0.05  0.40  3.60 12.59 0.73 

Student Feedback with Goal Setting (n=5) 0.17 -0.17 0.30 0.29 -0.15  0.49  12.67** 9.49 0.01 

Student Feedback Combined (n=12) 0.21* 0.14 0.10 0.04 0.01   0.40  16.37 19.68 0.13 

Cross-age Tutoringa (n=2) 1.02*** 0.95 0.23 0.00 0.57  1.47  0.68 3.48 0.41 

Peer-assisted Learning within a Class (n=6) 0.14 0.17 0.11 0.27 -0.09   0.32  2.66 11.07 0.75 
Note. SE = standard error; CI = confidence interval. n refers to number of effects.  
aFewer observed effects (n =2)  reduces confidence Cross-grade estimates 
~ p < .10. * p<.05. ** p<.01. *** p<.001.           
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Table 2  
Model Comparison of Treatment Effects (na = 41) After Controlling for Select Research Method and Characteristics Moderators 
                95% CI  

Moderator B weight Nb 
Standard 

Error 
Lower 
Limit 

  
Upper 
Limit p 

Method                  
  Relevantc Control (1) vs. Minimally Relevant Control (0) -0.17d - .38 -.92 .58 .65 
Characteristics              
 Word Problems (1) vs. Other (0) 0.45d - .34 -.22 1.19 .19 
  Norm-referenced Measure (1) vs. Researcher Developed (0) -0.44c~ - .24 -.90 .02 .06 
  Grade Level 0.01d - .04 -.07 .09 .76 
Instructional Components            
  Intercept      0.51* - .24 .04 .98 .03 
  Visuals for Teacher only (n = 12)     -0.68~ 440 .40 -1.47 .11 .09 
  Student Feedback with Goals (n=3)   -0.29 110 .51 -1.30 .72 .57 
  Teacher Feedback (n=7)     -0.18 215 .32 -.80 .45 .58 
  Peer-assisted Learning within a Class (n=6) -0.02 283 .38 -.77 .72 .57 
  Student Feedback (n=8)     0.03 353 .36 -.67 .73 .93 
  Visuals for Teacher and Student (n=7) 0.02 296 .53 -1.01 1.06 .96 
  Teacher Feedback plus Options (n=2)   0.16 36 .43 -.68 1.00 .70 
  Student Verbalizations (n=8)   0.24 389 .28 -.30 .78 .39 
  Sequence and/or Range (n=6)     0.42 228 .30 -.17 1.01 .16 
  Explicit Instruction (n=11)     0.53* 436 .24 .05 1.0 .03 
  Cross-age Tutoring (n=2)     0.80~ 90 .43 -.04 1.64 .06 
  Use of Heuristics (n=4)   1.21*** 88 .35 .52 1.90 .000 

 

Note. Mixed-weighted correlations - Random intercept weight added after applying level-2 moderators; Q model (df  = 16) = 100.06, p(Q) < .001; Q residual (df  

= 24) = 49.63, p(Q) = .002; R2  
model

 = .67 
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aLowercase “n” refers to number of effects contributing to each estimate. bN is the aggregated sample of all studies contributing to each component effect 

j

n

j

sampleN !
=

=
1

. cRelevant  - content covered in the control group was consistently relevant to the purpose of the study; Minimally relevant  - content 

covered in control group was minimally relevant to the purpose of the study.  dTreatment characteristics have  been centered so that summing of the 

intercept with component B weights yields predicted effect of treatment component holding other components constant (e.g., Visuals for teacher and 

student: gpred = Intercept + Visuals for teacher + visuals for teacher and student = -.15; Visuals for teacher only: gpred = Intercept + Visuals for teacher = -

.17).   

~ p < .10. * p<.05. ** p<.01. *** p<.001  
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Appendix A  

List of mathematical interventions used in the meta-analysisa 

 

# Study Coded Under 
Category 

Math Domain Student 
N 

Grade 
 

Designb Unit of 
assignment/ 

analysis 

Nature of 
control 
groupc 

Length Instruction 
Provided by 

 

Fidelity Maintenance 
or Transfer 
Assessed 

Reliability 
of Post 

Measuresd 

Interscorer 
Agreement 

 

Type of 
Dependent 
Measures 

1 Allinder, R. M., 
Bolling, R., Oats, 
R., & Gagnon, W. 
A. (2000).  

Feedback to 
teachers 

Operations 54 3-5 RCTe 
 
 

Teachers/ 
Students 

Relevant 36 
weeks 

Teacher Yes _ 0.85 99% Researcher 
Developed 

2 Bahr, C. M. & 
Reith, H. J. 
(1991).  

Feedback to 
students; Peer-

assisted 
instruction 

Operations 
 

46f 7-8 RCT Students/ 
Students 

Relevant 12 
sessions 

of 10 
minutes 

 

Computer No -- -- -- Researcher 
Developed & 

Norm-
referenced 

3 Baker, D. E. 
(1992).  

Curriculum/ 
Instruction 

Word problems 46 3–5 RCT 
 

Students/ 
Studentsg 

Relevant 2 
sessions 

of 45 
minutes 

Researcher No -- 0.82h 
 

-- Researcher 
Developed 

4 Bar-Eli, N., & 
Raviv, A. (1982).  

Peer-assisted 
instruction 

General math 
proficiency 

60 2-6 RCT Students/ 
Students 

Relevant 33 
sessions 

Peer tutors Yes -- -- -- Norm-
referenced 

5 Beirne-Smith, M. 
(1991).  

Curriculum/ 
Instruction; 

Peer-assisted 
instruction 

Operations 30 
 
 

1-5 RCT Students & 
teachers/ 

Students & 
teachers 

Relevant 4 
sessions 

of 30 
minutes 

Peer tutors Yes -- -- -- Researcher 
Developed 

6 Bottge, B. A., 
Heinrichs, M., 
Mehta, Z. D., & 
Hung, Y. (2002).  

Curriculum/ 
Instruction 

Word problems 8 7 RCT Students/ 
Students 

Relevant 12 
sessions 

Teacher Yes 
 

Maintenance, 
Transfer 

0.73-0.92 98-99% Researcher 
Developed 

 

7 Butler, F. M., 
Miller, S. P., 
Crehan, K., 
Babbitt, B., & 
Pierce T. (2003).  

Curriculum/ 
Instruction 

Fractions 50f 6-8 RCT Classes/ 
Students 

Relevant 10 
sessions 

of 45 
minutes 

Researcher Yes -- -- 97% Researcher 
Developed & 

Norm-
referenced 

 
8 Calhoon, M. B., & 

Fuchs, L., S. 
(2003).  

Feedback to 
teachers; 

Feedback to 
students; Peer- 

assisted 
instruction 

Operations; 
General math 

proficiency 

92 
 

9-12 RCT Classes/ 
Students 

Relevant 30 
sessions 

of 30 
minutes 

Teacher Yes -- 0.87, 0.92 97.2%, 
96.4% 

Researcher 
Developed & 

Norm-
referenced 

9 Fuchs, L. S., 
Fuchs, D., 
Hamlett, C. L., & 
Appleton, A. C. 
(2002).  

Curriculum/ 
Instruction 

Word problems 38 4 RCT Students/ 
Students 

Relevant 24 
sessions 

of 33 
minutes 

Researcher No Transfer 0.92, 0.95 
 

96-99% Researcher 
Developed 
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# Study Coded Under 

Category 
Math Domain Student 

N 
Grade 

 
Designb Unit of 

assignment/ 
analysis 

Nature of 
control 
groupc 

Length Instruction 
Provided by 

 

Fidelity Maintenance 
or Transfer 
Assessed 

Reliability 
of Post 

Measuresd 

Interscorer 
Agreement 

 

Type of 
Dependent 
Measures 

10 Fuchs, L. S., 
Fuchs, D., 
Hamlett, C. L., 
Phillips, N. B., & 
Bentz, J. (1994).  

Feedback to 
teachers; 

Feedback to 
students 

Operations 40 2-5 RCT Teachers/ 
Students 
yoked to 
teachers 

Relevant 25 
weeks 

Teacher Yes 
 

-- 0.85 99% Researcher 
Developed 

11 Fuchs, L. S., 
Fuchs, D., 
Hamlett, C. L., & 
Stecker, P. M. 
(1990).  

Feedback to 
teachers 

Operations 91f 
 

3-9 RCT Teachers/ 
Teachers 

Relevant 15 
weeks 

Teacher Yes -- 0.85 99% Researcher 
Developed 

12 Fuchs, L .S., 
Fuchs, D., 
Hamlett, C. L., & 
Stecker, P. M. 
(1991).  

Feedback to 
teachers 

Operations 63 2-8 RCT Teachers/ 
Teachers 

Relevant 20 
weeks 

Teacher Yes -- 0.85 99% Researcher 
Developed 

13 Fuchs, L. S., 
Fuchs, D., 
Hamlett, C. L., & 
Whinnery, K. 
(1991).  

Feedback to 
students 

Operations 36 2-8 RCT Students/ 
Students 

Relevant 20 
weeks 

Teacher Yes -- -- -- Researcher 
Developed 

14 Fuchs, L. S., 
Fuchs, D., Karns, 
K.,  Hamlett, C. L., 
Katzaroff, M., & 
Dutka, S. (1997).  

Feedback to 
students; Peer- 

assisted 
instruction 

Operations; 
General math 

proficiency 
 

40 
 

2-4 RCT Classes/ 
Classes 

Relevant 46 
sessions 

 
 

Teacher Yes -- 0.88 99% Researcher 
Developed 

15 Fuchs, L. S., 
Fuchs, D., Phillips, 
N. B., Hamlett, C. 
L., & Karns, K. 
(1995).  

Feedback to 
teachers; 

Feedback to 
students; Peer- 

assisted 
instruction 

Operations 40 2-4 RCT Teachers/ 
Classes 

Relevant 25 
weeks 

Teacher Yes Transfer 0.86 99% Researcher 
Developed 

16 Fuchs, L. S., 
Fuchs, D., 
Prentice, K. 
(2004).  

Curriculum/ 
Instruction; 

Feedback to 
students 

Word problems 45 3 RCT Teachers/ 
Students 

Relevant 32 
sessions 

of 33 
minutes 

Teacher, 
Researcher 

Yes -- 0.88-0.97 98% Researcher 
Developed 

17 Fuchs, D., 
Roberts, P. H., 
Fuchs, L. S., & 
Bowers, J. (1996).  

Feedback to 
teachers 

Operations 47 3-7 RCTi Teachers & 
students/ 
Students 

Relevant 36 
weeks 

Teacher No -- 0.85 99% Researcher 
Developed 

18 Hutchinson, N. L. 
(1993).  

Curriculum/ 
Instruction 

Word problems 
 

20 8-10 RCT Students/ 
Students 

Insufficient 
Information 

60 
sessions 

of 40 
minutes 

Researcher No -- -- -- Researcher 
Developed & 

Norm-
referenced 

19 Jitendra, A.K., 
Griffin, C.C., 

Curriculum/ 
Instruction 

Word problems 34f 2-5 RCT Students/ 
Students 

Relevant 19 
sessions 

Researcher Yes -- 0.77, 0.88h Yes Researcher 
Developed 
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# Study Coded Under 

Category 
Math Domain Student 

N 
Grade 

 
Designb Unit of 

assignment/ 
analysis 

Nature of 
control 
groupc 

Length Instruction 
Provided by 

 

Fidelity Maintenance 
or Transfer 
Assessed 

Reliability 
of Post 

Measuresd 

Interscorer 
Agreement 

 

Type of 
Dependent 
Measures 

McGoey, K., & 
Gardill, M.G. 
(1998).  

of 43 
minutes 

20 Author. (1990).  Curriculum/ 
Instruction 

Fractions 34f 9-11 RCT Students/ 
Students 

Relevant 10 
sessions 

of 30 
minutes 

Teacher; 
Researcher 

Yes -- 0.98 -- Researcher 
Developed 

21 Lambert, M.  A. 
(1996).  

Curriculum/ 
Instruction 

Word problems 76 9-12 QED Classes/ 
Students 

Relevant 8 
sessions 

of 55 
minutes 

Teacher No -- 0.73, 0.83 -- Researcher 
Developed 

22 Lee, J. W.  (1992)  Curriculum/ 
Instruction 

Word problems 33 4-6 RCT Classes/ 
Students 

Minimally 
Relevant 

9 
sessions 

of 45 
minutes 

Researcher No -- 0.59-0.91 95% Researcher 
Developed 

23  Manalo, E., 
Bunnell, J., & 
Stillman, J. 
(2000).j 
Experiment 1 

Curriculum/ 
Instruction 

Operations 
 

29 8 RCT Students/ 
Students 

Relevant 10 
sessions 

of 25 
minutes 

Researcher No Maintenance 0.71 -- Researcher 
Developed 

24 Manalo, E., 
Bunnell, J., & 
Stillman, J. (2000).   
Experiment 2 

Curriculum/ 
Instruction 

Operations 28 8 RCT Students/ 
Students 

Relevant 10 
sessions 

of 25 
minutes 

Researcher No Maintenance 0.71 -- Researcher 
Developed 

25 Marzola, E. 
(1987).  

Curriculum/ 
Instruction 

Word problems 60 5-6 RCT Schools/ 
Students 

Minimally 
Relevant 

12 
sessions 

of 30 
minutes 

Teacher No -- -- -- Researcher 
Developed 

26 Omizo, M. M., 
Cubberly, W. E., & 
Cubberly, R. D. 
(1985).  

Curriculum/ 
Instruction 

Operations 60 1-3 RCT Students & 
teachers/ 
Students 

Relevant 3 
sessions 

of 30 
minutes 

Teacher, 
Researcher 

No -- -- 
 

-- Researcher 
Developed 

27 Owen, R. L., & 
Fuchs, L. S. 
(2002).  

Curriculum/ 
Instruction 

Word problems 24f 3 RCT Classes/ 
Students 

Relevant 6 
sessions 

of 30 
minutes 

Researcher 94.9% -- 0.89 99.5% Researcher 
Developed 

28 Pavchinski, P. 
(1988).  

Curriculum/ 
Instruction 

Operations 94 1-5 
 
 

RCT Teachers/ 
Students 

Relevant 19 
sessions 

of 60 
minutes 

Teacher Yes Maintenance -- -- Researcher 
Developed & 

Norm-
referenced 

29 Reisz, J. D. 
(1984).  

Feedback to 
students 

General math 
proficiency 

29 7-8 RCT Students/ 
Students 

Insufficient 
Information 

16 
sessions 

Researcher No Maintenance 0.97 -- Norm-
referenced 
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# Study Coded Under 

Category 
Math Domain Student 

N 
Grade 

 
Designb Unit of 

assignment/ 
analysis 

Nature of 
control 
groupc 

Length Instruction 
Provided by 

 

Fidelity Maintenance 
or Transfer 
Assessed 

Reliability 
of Post 

Measuresd 

Interscorer 
Agreement 

 

Type of 
Dependent 
Measures 

30 Ross, P. A., & 
Braden, J. P. 
(1991).  

Curriculum/ 
Instruction 

Operations 
 

94 1-5 RCT Teachers/ 
Students 

Relevant 19 
sessions 

of 60 
minutes 

Teacher Yes -- -- -- Researcher 
Developed & 

Norm-
referenced 

31 Schunk, D. H., & 
Cox, P. D. (1986).  

Curriculum/ 
Instruction; 

Feedback to 
students 

Operations 90 6-8 RCT Students/ 
Students 

Relevant 6 
sessions 

of 45 
minutes 

Researcher Yes -- 0.82k -- Researcher 
Developed 

32 Slavin, R. E., 
Madden, N. A., & 
Leavey, M. 
(1984a).  

Feedback to 
students; Peer- 

assisted 
instruction 

Operations; 
general math 

proficiency 

113 3-5 QED Schools/ 
Classes & 
Students 

Relevant 24 
weeks 

Teacher Yes -- -- -- Norm-
referenced 

33 Slavin, R. E., 
Madden, N. A., & 
Leavy, M. (1984b).  

Feedback to 
students; Peer- 

assisted 
instruction 

Operations 117 3-5 RCTl 
 

Schools/ 
Students 

Relevant 10 
weeks 

Teacher No -- -- -- Norm-
referenced 

34 Tournaki, H. 
(1993).  

Curriculum/ 
Instruction 

Operations 
 

42 3-5 QED 
 

Students/ 
Students 

Relevant 8 
sessions 

of 15 
minutes 

Researcher No Transfer 0.93 
 

98% Researcher 
Developed 

35 Tournaki, N. 
(2003).  

Curriculum/ 
Instruction 

Operations 42 3-5 RCT 
 

Students/ 
Students 

Relevant 8 
sessions 

of 15 
minutes 

Researcher No Transfer 0.91 
 

98% Researcher 
Developed 

36 Van Luit, J. E. H., 
& Naglieri, J. A. 
(1999).  

Curriculum/ 
Instruction 

Operations 42 3-5 RCT Students/ 
Students 

Insufficient 
Information 

51 
sessions 

of 45 
minutes 

Teacher No Transfer -- -- Researcher 
Developed 

37 Walker, D. W., & 
Poteet, J. A. 
(1989/1990).  

Curriculum/ 
Instruction 

Word problems 70 6-8 RCT Teachers/ 
Classes & 
students 

Relevant 17 
sessions 

of 30 
minutes 

Teacher Yes Transfer 0.83, 0.91 -- Researcher 
Developed 

38 Wilson, C. L., & 
Sindelar, P. T. 
(1991).  

Curriculum/ 
Instruction 

Word problems 62 2-5 RCT Schools/ 
Students 

Relevant 14 
sessions 

of 30 
minutes 

Researcher Yes -- 0.88 -- Researcher 
Developed 

39 Witzel, B., Mercer, 
C. D., & Miller, M. 
D. (2003).  

Curriculum/ 
Instruction 

Algebra 
 
 

68f 6 -7 RCT Teachers/ 
Students 

Relevant 19 
sessions 

of 50 
minutes 

Teacher Yes -- 
 

-- -- Researcher 
Developed 

40 Woodward, J. 
(2006).  

Curriculum/ 
Instruction 

Operations 15 4 RCT Students/ 
Students 

Relevant 20 
sessions 

of 25 
minutes 

Teacher Yes Transfer >0.90j -- Researcher 
Developed 
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# Study Coded Under 

Category 
Math Domain Student 

N 
Grade 

 
Designb Unit of 

assignment/ 
analysis 

Nature of 
control 
groupc 

Length Instruction 
Provided by 

 

Fidelity Maintenance 
or Transfer 
Assessed 

Reliability 
of Post 

Measuresd 

Interscorer 
Agreement 

 

Type of 
Dependent 
Measures 

41 Woodward, J., 
Monroe, K., & 
Baxter, J. (2001).  

Curriculum/ 
Instruction 

Word problems 11 4 QED Schools/ 
Students 

Minimally 
Relevant 

69 
sessions 

of 30 
minutes 

 

Teacher, 
Staff 

No -- 0.85-0.92 93% Researcher 
Developed 

42 Xin, Y. P., 
Jitendra, A. K., & 
Deatline-
Buchman, A. 
(2005).  

Curriculum/ 
Instruction 

Word problems 22f 6-8 RCT Students/ 
Students 

Relevant 12 
sessions 

of 60 
minutes 

Researcher Yes Maintenance, 
Transfer 

0.84h 100% Researcher 
Developed 

 
Note. Dashes for Maintenance or Transfer assessed indicate the data was not obtained or did not meet our criteria for maintenance and transfer measure. Dashes for Reliability of Post Measures and Interscorer 

Agreement indicate data was not reported. 

aTotal number of research papers = 41; total number of mathematical interventions = 42. bRCT = randomized controlled trial; QED = quasi-experimental design. cRelevant =  content covered in the control group was 

consistently relevant to the purpose of the study. Minimally relevant = content covered in control group was minimally relevant to the purpose of the study. Insufficient information = enough information on instruction in 

control group was not provided to make a decision regarding the relevancy of content to the purpose of the study. dInternal consistency coefficients, unless noted otherwise. eRandom assignment was assumed 

because participants volunteered and random assignment was used to assign two interventions to treatment group. fSample in this study was primarily LD, but not 100% LD. gFor approximately 15% of the students, 

assignment was at the school level.  Most students were randomly assigned individually, but two schools were randomly assigned as a whole. hParallel forms reliability, iTeachers were randomly assigned with 2 

exceptions.  Two teachers were assigned based on their previous experience with the interventions. jTwo mathematical interventions were reported in this research paper. kTest-retest reliability. lRandomly assigned; 

attrition of  one school; replacement school chosen purposefully. Internal consistency coefficients, unless otherwise specified.  
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Appendix B 

Effect Sizes and Research Questions of Studies Categorically 
 

Category Study Research Question Hedge’s g 
(Random 
Weight- 
Effect) 

Fuchs, L. S., Fuchs, D., 
Hamlett, C. L., & 
Appleton, A. C. (2002). 

Problem solving tutoring vs. basal 
instruction only 

1.78a 

Jitendra, A.K., Griffin, 
C.C., McGoey, K., 
Gardill, M.G., Bhat, P., & 
Riley, T.  (1998). 

Explicit instruction in diagrammatic 
representations vs. control (basal 
curriculum) 

0.67b 

Kelly, B., Gersten, R., & 
Carnine, D. (1990). 

Instruction incorporating principles 
of curriculum design vs. control 
(basal curriculum) 

0.88  

Lee, J.W. (1992). Explicit instruction on using a visual 
cue vs. control (textbook 
curriculum) 

0.86c 

Marzola, E.S. (1987).  Explicit problem solving instruction 
with verbalizations vs. feedback 
only  (no systematic instruction) 

2.01c 

Owen, R. L., & Fuchs, L. 
S. (2002).  

Explicit visual strategy instruction 
vs. control (basal instruction)  

1.39 

Ross, P. A., & Braden, J. 
P. (1991). 

Explicit strategy instruction with 
verbalizations vs. control (typical 
classroom instruction plus token 
reinforcement) 

0.08cd 

Tournaki, H. (1993).  Explicit self-instruction strategy vs. 
drill and practice 

1.74 

Tournaki, H. (2003).  Explicit minimum addend strategy 
with verbalizations vs. drill and 
practice 

1.61 

Wilson, C. L. & Sindelar, 
P. T. (1991). 

Explicit strategy instructions vs. 
sequential instruction (simple to 
more complex problems) 

0.91d 

Explicit Instruction 

Xin, Y. P., Jitendra, A. K., 
& Deatline-Buchman, A. 
(2005).  

Explicit schema-based strategy 
instruction vs. general strategy 
instruction 

2.15d 

Use of Heuristics Hutchinson, N. L. (1993). Cognitive strategy instruction vs. 
control (regular instruction) 

1.24c 

 Van Luit, J. E. H., & 
Naglieri, J. A. (1999). 

MASTER program vs. general 
instruction program 

2.45 
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Category Study Research Question Hedge’s g 
(Random 
Weight- 
Effect) 

Woodward, J. (2006). Strategy instruction plus timed 
practice drills vs. timed practice 
drills 

0.54cd  

Woodward, J., Monroe, 
K., & Baxter, J. (2001). 

Classwide instruction in 
performance tasks + problem 
solving instruction in as hoc tutoring 
vs. regular instruction. 

2.00 

Hutchinson, N. L. (1993). Cognitive strategy instruction vs. 
control (regular instruction) 

1.24c 

Marzola, E.S. (1987). Explicit problem solving instruction 
with verbalizations vs. feedback 
only  (no systematic instruction) 

2.01c 

Omizo, M. M., Cubberly, 
W. E., & Cubberly, R. D. 
(1985). 

Modeling by teacher plus student 
verbalizations vs. modeling by 
teacher only 

1.75 

Pavchinski, P. (1988).  Self-instruction vs. traditional 
teacher instruction  

0.22cd 

Ross, P. A., & Braden, J. 
P. (1991). 

Explicit strategy instruction with 
verbalizations vs. control (typical 
classroom instruction plus token 
reinforcement) 

0.08cd 

Schunk, D. H., & Cox, P. 
D. (1986). 

Continuous student verbalizations 
vs. no student verbalizations 

0.07 

Tournaki, H. (1993).  Self-instruction strategy vs. drill and 
practice 

1.74 

Student 
Verbalization of 
Their Mathematical 
Reasoning 
 

Tournaki, H. (2003).  
 

Explicit minimum addend strategy 
with verbalizations vs. drill and 
practice 

1.61 

Baker, D. E. (1992). Strategy with drawing vs. Strategy 
without drawing 

0.31 

Hutchinson, N. L. (1993). Cognitive strategy instruction vs. 
control (regular instruction) 

1.24c 

Jitendra, A.K., Griffin, 
C.C., McGoey, K., 
Gardill, M.G., Bhat, P., & 
Riley, T.  (1998). 

Explicit instruction in diagrammatic 
representations vs. control (basal 
instruction) 

0.67b 

Lambert, M.  A. (1996). Complex strategy involving 
visualization vs. control (textbook 
curriculum strategy) 

0.11c 

Visual 
Representations: 
Use by both 
Teachers and 
Students 
 

Lee, J.W. (1992). Explicit instruction on using a visual 
cue vs. Control (textbook 

0.86c 
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Category Study Research Question Hedge’s g 
(Random 
Weight- 
Effect) 

curriculum) 

Owen, R. L., & Fuchs, L. 
S. (2002).  

Explicit visual strategy instruction 
vs. control (basal instruction)  

1.39 

 

Walker, D. W., & Poteet, 
J. A. (1989/1990). 

Diagrammatic representations of 
problems vs. control (basal key-
word strategy)  

0.31 

Kelly, B., Gersten, R., & 
Carnine, D. (1990). 

Instruction incorporating principles 
of curriculum design vs. control 
(basal curriculum) 

0.88  

Manalo, E., Bunnell, J.K., 
& Stillman, J.A. (2000). 
Experiment 1 

Strategy instruction plus mnemonics 
vs. strategy instruction only 

-0.01cd 

Manalo, E., Bunnell, J.K., 
& Stillman, J.A. (2000). 
Experiment 2 

Strategy instruction plus mnemonics 
vs. strategy instruction only 

-0.29cd 

Witzel, B.S., Mercer, C. 
D., & Miller, M. D. 
(2003). 

Concrete- representational -abstract 
sequence of instruction vs. abstract 
only instruction 

0.50d  

Visual 
Representations: 
Use by Teachers 
Only  
 

Woodward, J. (2006). Strategy instruction plus timed 
practice drills vs. timed practice 
drills 

0.54cd 

Beirne-Smith, M. (1991).  
 

Sequential presentation of sets of 
related math facts vs. random 
presentation of math facts  
(both within the context of a peer 
tutoring study) 

0.12 

Butler, F. M., Miller, S. 
P., Crehan, K., Babbitt, 
B., & Pierce T. (2003).  

Concrete-representational-abstract 
instructional sequence vs. 
representational-abstract 
instructional sequence 

0.29c 

Fuchs, L. S., Fuchs, D., & 
Prentice, K. (2004). 

Transfer training + self-regulation 
vs. control (regular classroom 
instruction) 

1.14c 

Kelly, B., Gersten, R., & 
Carnine, D. (1990). 

Instruction incorporating principles 
of curriculum design vs. Control 
(instruction using basal curriculum) 

0.88   

Owen, R. L., & Fuchs, L. 
S. (2002).  

Explicit visual strategy instruction 
vs. Control (basal instruction)  

0.26 

Sequence and/or 
Range of Examples 
 

Wilson, C. L. & Sindelar, 
P. T. (1991).  

Explicit strategy instruction + 
sequential instruction (simple to 
more complex problems) vs. explicit 

1.55d 
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Category Study Research Question Hedge’s g 
(Random 
Weight- 
Effect) 

strategy instruction only 

Witzel, B.S., Mercer, C. 
D., & Miller, M. D. 
(2003). 

Concrete-to- representational-to-
abstract sequence of instruction vs. 
abstract only instruction 

0.50d 

Woodward, J. (2006). Strategy instruction plus timed 
practice drills vs. timed practice 
drills 

0.54cd 

 

Xin, Y. P., Jitendra, A. K., 
& Deatline-Buchman, A. 
(2005).  

Explicit schema-based strategy 
instruction vs. general strategy 

2.15 d 

Other Instructional 
and Curricular 
Variables 

Bottge, B. A., Heinrichs, 
M., Mehta, Z. D., & 
Hung, Y. (2002). 

Anchored instruction vs. Problem 
solving instruction 

0.80c 

Allinder, R. M., Bolling, 
R., Oats, R., & Gagnon, 
W. A. (2000). 

CBM vs. Control (No CBM; basal 
instruction) 

0.27 

Calhoon, M. B., & Fuchs, 
L. S. (2003). 

CBM vs. Control (No CBM; basal 
instruction) 

 0.17c 

Fuchs, L. S., Fuchs, D., 
Hamlett, C. L., Phillips, 
N. B., & Bentz, J. (1994).  

CBM vs. Control (No CBM; regular 
classroom instruction) 

0.19 

Fuchs, L. S., Fuchs, D., 
Hamlett, C. L., & Stecker, 
P. M. (1990).  

CBM vs. Control (No CBM; no 
systematic performance monitoring) 

0.14c 

Fuchs, L .S., Fuchs, D., 
Hamlett, C. L., & Stecker, 
P. M. (1991). 

CBM vs. Control (No CBM-
standard monitoring and adjusting 
teaching) 

0.40c 

Fuchs, L. S., Fuchs, D., 
Phillips, N. B., Hamlett, 
C. L., & Karns, K. (1995).  

CBM vs. Control (No CBM) 0.17 

Providing Teachers 
with Student 
Performance Data  
 

Fuchs, D., Roberts, P. H., 
Fuchs, L. S., & Bowers, J. 
(1996). 

CBM vs. Control (No CBM) 
 

0.32 

Allinder, R. M., Bolling, 
R.M., Oats, R.G., & 
Gagnon, W. A. (2000). 

CBM with self-monitoring vs. CBM 
only 

0.48 

Fuchs, L. S., Fuchs, D., 
Hamlett, C. L., Phillips, 
N. B., & Bentz, J. (1994).  

CBM with computer-generated 
instructional recommendations vs. 
CBM only  

-0.06 

Providing Teachers 
with Student 
performance Data 
Plus Options for 
Addressing 
Instructional Needs 
(e.g., instructional 
recommendations)  Fuchs, L .S., Fuchs, D., 

Hamlett, C. L., & Stecker, 
Computerized instructional advice 
vs. CBM only 

0.24c 
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Category Study Research Question Hedge’s g 
(Random 
Weight- 
Effect) 

 P. M. (1991). 

Calhoon, M. B., & Fuchs, 
L. S. (2003). 

CBM + PALS vs. control (basal 
instruction) 

0.17c 

Fuchs, L. S., Fuchs, D., 
Hamlett, C. L., Phillips, 
N. B., & Bentz, J. (1994).  

CBM vs. Control (No CBM; regular 
classroom instruction) 

0.19 

Fuchs, L. S., Fuchs, D., 
Karns, K.,  Hamlett, C. L., 
Katzaroff, M., & Dutka, 
S. (1997). 

CBM vs. control (basal instruction) -0.17 

Fuchs, L. S., Fuchs, D., 
Phillips, N. B., Hamlett, 
C. L., & Karns, K. (1995).  

CBM + PALS vs. control (no 
systematic student performance 
monitoring) 

0.17 

Schunk, D. H., & Cox, P. 
D. (1986). 

Feedback on effort expended vs. No 
feedback on effort  

0.60 

Slavin, R. E., Madden, N. 
A., & Leavey, M. 
(1984a).  

Working in a cooperative learning 
group vs. Control (regular 
instruction) 

0.24c 

Providing Students 
with Mathematics 
Performance 
Feedback  
 

Slavin, R. E., Madden, N. 
A., & Leavey, M. 
(1984b). 

Working in a cooperative learning 
group vs. Control (regular 
instruction) 

0.07 

Bahr, C. M. & Rieth, H. J. 
(1991). 

Feedback with goal vs. feedback 
with no goal  

-0.34  

Fuchs, L. S., Fuchs, D., 
Hamlett, C. L., & 
Whinnery, K. (1991). 

Feedback with goal lines 
superimposed on graphs vs. 
feedback with graphs without goal 
lines 

-0.19 

Fuchs, L. S., Fuchs, D., 
Karns, K.,  Hamlett, C. L., 
Katzaroff, M., & Dutka, 
S. (1997). 

Feedback with goal setting vs. 
feedback only 
  

0.07 

Fuchs, L. S., Fuchs, D., & 
Prentice, K. (2004). 

Transfer training +self-regulation 
(goal setting) vs. control (regular 
classroom instruction) 

1.14c 

Providing Students 
with Mathematics 
Performance 
Feedback and Goal 
Setting 
Opportunities 

Reisz, J. D. (1984). Feedback with goal setting 
discussion vs. control (no 
description) 

0.11 

Cross-Age Tutoring Bar-Eli, N., & Raviv, A. 
(1982). 

Cross-age peer tutoring vs. no peer  
tutoring 

1.15 

 Beirne-Smith, M. (1991). Cross-age peer tutoring vs. no peer  
tutoring 

0.75 
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(Random 
Weight- 
Effect) 

Bahr, C. M. & Rieth, H. J. 
(1991). 

Working in pairs with cooperative 
goals vs. working individually 

0.25  

Calhoon, M. B., & Fuchs, 
L. S. (2003). 

PALS vs. control  (basal instruction) 0.17c 

Fuchs, L. S., Fuchs, D., 
Karns, K.,  Hamlett, C. L., 
Katzaroff, M., & Dutka, 
S. (1997). 

Peer tutoring vs. control (basal 
instruction) 
  

-0.17 

Fuchs, L. S., Fuchs, D., 
Phillips, N. B., Hamlett, 
C. L., & Karns, K. (1995). 

PALS vs. Control 
(standard procedures) 

0.17 

Slavin, R. E., Madden, N. 
A., & Leavey, M. 
(1984a). 

Working in a cooperative learning 
group vs. Control (regular 
instruction) 

0.24c 

Peer-assisted 
learning within a 
class  

Slavin, R. E., Madden, N. 
A., & Leavy, M. (1984b). 

Working in a cooperative learning 
group vs. working individually 

-0.27 

aEffect size is based on post-test and near transfer measure. bEffect size is based on post-test, short-term 

retention measure given within a 3-week period, and near-transfer measure. cEffect size is based on 

multiple post-tests. dEffect size is based on post-test and short-term retention measure given within a 3-

week. 




